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The work of Riemann and Kodaira

Riemann was one of the founders of complex analysis, along with
Cauchy. Riemann pioneered several directions in the subject of
holomorphic functions:

1. The idea of using differential equations and variational principle.
The major work here is the Cauchy-Riemann equation, and the
creation of Dirichlet principle to solve the boundary value problem
for harmonic functions. (It took several great mathematicians,
such as David Hilbert, to complete this work of Riemann.)
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2. He gave the proof of the Riemann mapping theorem for simply
connected domains. This theory of uniformization theorems has
been extremely influential. There are methods based on various
approaches, including methods of partial differential equations,
hypergeometric functions and algebraic geometry. A natural
generalization is to understand the moduli space of Riemann
surfaces where Riemann made an important contribution by
showing that it is a complex variety with dimension 3g − 3.
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3. The idea of using geometry to understand multivalued
holomorphic functions, where he looked at the largest domain that
a multivalued holomorphic function can define. He created the
concept of Riemann surfaces, where he studied their topology and
their moduli space. In fact, he introduced the concept of
connectivity of space by cutting Riemann surface into pieces. The
concept of Betti number was introduced by him for spaces in
arbitrary dimension.

4 / 72



The idea of understanding analytic problems through topology or
geometry has far-reaching consequences. It influenced the later
works of Poincaré, Picard, Lefstchetz, Hodge and others.
Important examples of Riemann’s research is to use monodromy
groups to study analytic functions. Such study has deep influence
on the development of discrete groups in the 20th century. The
Riemann-Hilbert problem was inspired by this and up to now, is
still an important subject in geometry and analysis. The study of
ramified covering and the Riemann-Hurwitz formula gave an
efficient technique in algebraic geometry and number theory.
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4. The discovery of Riemann-Roch formula over algebraic curve.
The formula gave an effective way to calculate the dimension of
holomorphic sections of a holomorphic bundle. The generalizations
by Kodaira, Hirzebruch, Grothendieck, Atiyah-Singer have led to
tremendous progress in mathematics in the twentieth century.

5. His study of period integrals related to Abel-Jacobi map and the
hypergeometric equations:

z(1− z)y ′′ + [c − (a + b + c)z ]y ′ − aby = 0.
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6. The study of Riemann bilinear relations, the Riemann forms and
the theta functions. During his study of the periods of Riemann
surfaces, he found that the period matrix must satisfy period
relations with a suitable invertible skew symmetric integral matrix
which is called Riemann matrix later. Riemann realized that the
period relations give necessary and sufficient condition for the
existence of non-degenerate Abelian functions.

(According to Siegel, his formulation was incomplete and he did
not supply a proof. Later, Weierstrass also failed to establish a
complete proof despite his many efforts in this direction. Complete
proofs were finally attained by Appell for the case g = 2 and by
Poincaré for arbitrary g .)
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It should be noted that Riemann spent the last four years of his life
in Italy because he contracted Tuberculosis and needed to avoid
the severe winter in Germany. But as a result, he inspired a large
group of differential geometers and projective algebraic geometers
in Italy. Their works influenced the development of geometry and
physics in the 20th century.
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First of all, we should say that Riemann was the mathematician
that brought us a new concept of space that was not perceived by
any mathematician before him. I believe that was the reason that
Gauss was so touched by his famous address on the foundations of
geometry in 1854. I could not read German and was only able to
read this address recently after it was translated into English. I was
rather surprised that Riemann had rather liberal view about what
geometry is supposed to be.
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His guiding principle was nature itself:

The theorems of geometry cannot be deduced from the
general notion of magnitude alone, but only from those
properties which distinguished space from other
conceivable entities, and these properties can only be
found experimentally .... This takes us into the realm of
another science – physics.

B. Riemann (“On the Hypotheses Which Lie at
the Foundation of Geometry,” 1854)
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He thinks a deep understanding of geometry should be based on
concepts of physics. And this is indeed the case as we experienced
in the past century, especially in the past 50 years development of
geometry. Although he was the one who introduced the concept of
Riemann surface, which is the largest domain that a multivalued
holomorphic function lives in, the precise modern concept was
developed much later through the efforts of Klein, Poincaré and
others.

While Felix Klein already used atlas to describe Riemann surface, it
has to wait until Hermann Weyl who first gave the modern rigorous
definition of Riemann surface, in terms of coordinate charts.
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It was rather strange that a formal introduction of the concept of
complex manifold was quite a bit later. Historically, generalization
of one complex variable to several complex variables began by the
study of functions on domains in Cn. There were fundamental
works of Levi, Oka, and Bergman.

The natural generalization of the concept of two dimensional
surfaces to higher dimensional manifolds was done by O. Veblen
and J.H.C. Whitehead in 1931-32. H. Whitney (1936) clarified the
concept by proving that differentiable manifolds can be embedded
into Euclidean space.
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However, it was only in 1932 at the International Congress of
Mathematicians in Zurich, did Caratheodory study “four
dimensional Riemann surface” for its own sake. In 1944,
Teichmüller mentioned “komplexe analytische Mannigfaltigkeit” in
his work on “Veränderliche Riemannsce Flächen”.

Chern was perhaps the first one to call the English “complex
manifold” in his work.

The general abstract concept of almost complex structure was
introduced by Ehresmann and Hopf in the 1940s. In 1948, Hopf
proved that the spheres S4 and S8 cannot admit almost complex
structures.
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The concept of Kähler geometry was introduced by Kähler in 1933
where he demanded the Kähler form (which was first constructed
by E. Cartan) to have a Kähler potential. Kähler had already
observed special properties of such metric. He knew that the Ricci
tensor associated to the metric tensor gi j̄ can be written rather
simply as

Rkl̄ = − ∂2

∂zk∂z̄l
(log det gi j̄),

which gave a globally defined closed form on the manifold.
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He knew that it defines a topological invariant for the geometry. It
defines a cohomology class independent of the metric. It was
found later that, after normalization, it represents the first chern
class of the manifold. The simplicity of the Ricci form allows
Kähler to define the concept of Kähler-Einstein metric and he
wrote down the equation locally in terms of the Kähler potential.
He gave examples of the Kähler metric of the ball.
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Slightly afterwards, Hodge developed Hodge theory, without
knowing the work of Kähler, based on the induced metric from
projective space to the algebraic manifolds. He studied the theory
of harmonic forms with special attention to algebraic manifolds.
The (p, q) decomposition of the differential forms have tremendous
influence on the global understanding of Kähler manifolds. A very
important observation is that the Hodge Laplacian commutes with
the projection operator to the (p, q)-forms and hence the (p, q)
decomposition descends to the de Rham cohomology. The theory
was soon generalized to cohomology with twisted coefficients.
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A very important cohomology with twisted coefficient is
cohomology with coefficient in the tangent bundle or cotangent
bundle, and their exterior powers. For the first cohomology with
coefficient in tangent bundle, Kodaira and Spencer developed the
fundamental theory of deformation of geometric structures, which
gave far reaching generalization of the works of Riemann, Klein,
Teichmüller and others on parametrization of complex structures
over Riemann surfaces.

They realize that the first cohomology with coefficient on tangent
bundle, denoted by H1(T ), parametrize the complex structure
infinitesimally and that the second cohomology with coefficient on
tangent bundle, denoted by H2(T ), gives rise to obstruction to the
deformation. The last statement was made very precisely by
Kuranishi using Harmonic theory of Hodge-Kodaira. It describes
the singular structure of the moduli space locally.
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Kodaira-Spencer studied how elements in H1(T ) acts on other
cohomology, which leads to study of variation of Hodge structures.
The Hodge groups can be grouped in an appropriate way to form a
natural filtration of the natural de Rham groups. The
Kodaira-Spencer map plays a very important role in understanding
the deformation of such filtrations. Cohomology with coefficients
of cotangent bundle or wedge product of cotangent bundle gives to
Hodge (p, q) forms. The duality of tangent bundle and cotangent
bundle gives rise to something called mirror symmetry studied
extensively in the last thirty years in relation to the theory of
Calabi-Yau manifolds.
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A very important tool in complex geometry was the introduction of
Chern classes to complex bundles over a manifold and the
representation of such classes by curvature of the bundle.

When Chern introduced the concept of Chern class, he was
influenced by the work of Pontryagin on characteristic classes. In
the course of defining Chern classes by de Rham forms given by
symmetric polynomial of the curvature form, Chern developed the
Chern connections for holomorphic bundles. It was also Chern who
proved that Chern classes for algebraic manifolds are represented
by algebraic cycles. This has been the major evidence of the
famous Hodge conjecture, which says that every (p, p)-class of an
algebraic manifold can be represented by algebraic cycles.
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Chern proved that there are three different approaches to define
Chern classes and explained why they are integral classes. Weil
explained how they are related to Ad-invariant polynomials. It was
remarkable that Weil made a remark that the integrality of Chern
class should mean that it will play a role in quantum theory.
Chern-Weil theory forms a bridge between topology and geometry.
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The desire to generalize Riemann-Roch formula to higher
dimensional algebraic manifolds has been relative slow, until the
very powerful methods of sheaf theory was introduced by Leray,
and important inputs were given by Weil, Borel and Serre. These
basic techniques enabled Hirzebruch to arrive at the important
Hirzebruch-Riemann-Roch formula in his 1954 paper, which can be
stated in the following way:

χ(V ,E ) =

∫
V

ch(E )td(V ),

where E is a holomorphic vector bundle over a projective variety V .
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The formulation of this formula by itself is remarkable: Hirzebruch
developed the splitting principle and the theory of multiplicative
sequences to find a formal power series of Chern classes. The Todd
class is such a power series which is found by Hirzebruch to
represent the arithmetic genus of an algebraic manifold. The Chern
character was invented by him to be a homomorphism from space
of algebraic bundles to even dimensional cohomology .
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In the other direction, Kodaira was the first major mathematician
who developed Hodge theory of harmonic forms right after its
announcement by Hodge, and he generalized the theory of
harmonic forms to manifolds with boundaries, where various
boundary conditions have to be imposed.

Perhaps his most important work was his deep understanding that
the Bochner argument in Riemannian geometry can be used to
prove a vanishing theorem for cohomology classes under curvature
condition of the manifold. He realized that the natural place for
such vanishing theorem is to deal with cohomology with coefficient
on bundle or sheaf. The vanishing theorem of Kodaira says that for
positive line bundle L on a compact complex manifold M:

Hq(M,KM ⊗ L) = 0

for q > 0.
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Coupled with the following theorem of Serre duality:

Hq(M,E ) ∼= Hn−q(M,K ⊗ E ∗),

Kodaira vanishing theorem implies that the Euler characteristic of
cohomology with coefficients in a holomorphic vector bundle E
with E ⊗ K ∗ positive, is simply the dimension of the group of
holomorphic sections of E .

The above mentioned Hirzebruch-Riemann-Roch theorem then
gives a formula to compute the dimension of the sections of the
holomorphic bundle in terms of Chern numbers defined by Chern
classes of the manifold and the bundle. This creates the most
basic tool to understand algebraic manifolds.
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Kodaira also showed that by blowing up points on the manifold,
one can find enough holomorphic sections to separate points of the
original manifolds and in fact gives an embedding of the manifold
into complex projective space by using holomorphic sections of a
very ample line bundle.

M → PN , p 7→ [s0(p), . . . , sN(p)]

where s0, . . . , sN is a basis for H0(M, L).

In particular, he proved that any Kähler manifold, whose Kähler
class is defined by the Chern class of a holomorphic line bundle,
can be holomorphically embedded into the complex projective
space. The theorem of Chow then implies the manifold is in fact
defined by an ideal of homogeneous polynomials, and hence an
algebraic manifold.
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What Kodaira has proved is one of the most spectacular theorems
in mathematics, and a glorious generalization of the work of
Riemann on the condition of a complex torus to be abelian. More
importantly the method of proving the Kodaira vanishing theorem
has far reaching consequences in complex geometry. It was
generalized to noncompact complex manifold, by various
mathematicians including C. Morrey, Hörmander, Kohn, Vesentini,
and others.
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However, an upper bound of the power of the line bundle is not
clear from Kodaira’s argument.

Later on, Matsusaka (improved by Kollár-Matsusaka) proved the
very-ampleness of mL for an ample line bundle L on an
n-dimensional projective variety X , when m is no less than a
bound, depending only on the intersection numbers Ln and
KX · Ln−1 on X .
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In 1980s, Kawamata proved his famous basepoint freeness theorem
about the pluricanonical systems of minimal models. This is very
important in the study of abundance conjecture. He proved that
under the assumption that the numerical Kodaira dimension of a
minimal variety X is equal to its Kodaira dimension, the
pluricanonical system |mKX | is basepoint free for large m. This
implies the basepoint freeness for minimal models of general type
varieties. Later on, in a series paper of Miyaoka and Kawamata,
they settled the proof of abundance conjecture for threefolds.
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An important unsolved conjecture was proposed by Fujita in 1985,
mL + KX is base-point free for m ≥ n + 1 and is very ample for
m ≥ n + 2. Many mathematicians did important work on Fujita’s
conjecture, including Reider, Ein-Lazarsfeld, Kawamata, and many
others. Demailly proved an effective formula for the bound on very
ampleness. Angehrn and Siu proved a quadratic bound for
basepoint freeness.
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There are many other contributioins to algebraic geometry made
by Japanese algebraic geometers. Mori first introduced the
ingenious idea of “bend and break” argument in his proof of
Hartshorne conjecture. This leads to his proof of cone theorem in
birational geometry and had deep influences in minimal model
program. Mukai introduced the Fourier-Mukai transform in 1981.
This became an important tool in the study of derived categories.
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Calabi conjecture and Kähler-Einstein metrics

The theorems by Kodaira, Matsusaka and Kawamata provide
abundance of holomorphic sections for the holomorphic line bundle
to embed the manifold into complex projective with higher
dimension.

An interesting important problem is the zero codimension case
where we want to embed X to complex projective space with the
same dimension. This can be interpreted as a generalization of
uniformization theorem from 2-dimensional sphere to higher
dimension.
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Hirzebruch and Kodaira proved that every algebraic manifold that
is homeomorphic to CPn is actually biholomorphic to it. They used
Hirzebruch-Riemann-Roch formula, but they could only treat the
case of odd dimensional manifolds due to the indeterminacy of the
sign of the first Chern class. The even dimensional case was finally
settled by me in 1976.
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My argument depends on the existence of Kähler-Einstein metrics
assuming the first Chern class is either positive, zero or negative.
Although the Kähler-Einstein metric was already discussed by
Kähler in his 1933 paper, where he wrote the equation explicitly, it
wasn’t until 1954 when Calabi made a formal proposal to prove the
existence of Kähler metric with prescribed volume form.

This could be used to proved the existence of Ricci-flat Kähler
metric for any polarization if the first Chern class of the manifold is
zero. Then Calabi asked the question when the first Chern class of
the manifold is either negative or positive. The questions of Calabi
were believed to be too good to be true in the old days, as nobody
was able to construct an explicit Kähler-Einstein metric on any
compact Kähler manifolds with no symmetries.
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In 1976, I settled the cases when the first Chern class is either
trivial or negative. (Aubin did the work independently for negative
first Chern class.) I also considered the case when the manifold
can have singularities, as was announced in my talk at 1978 ICM in
Helsinki.
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Kähler-Einstein metrics on Fano manifolds

When the first Chern class is positive, it is called a Fano manifold.
There are many interesting properties about Fano manifolds.
Kollár, Mori and Miyaoka showed that smooth Fano varieties are
rationally connected, in the sense that any two points are
connected by a rational curve with (effectively) bounded degree.
This implies an effective bound for the degree of the Fano n-fold,
with respect to its anti-canonical bundle. Based on the work of
Kollár and Matsusaka, it also implies that Fano n-folds form a
bounded family.
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In this case, there is an obstruction for the existence of
Kähler-Einstein metric due to Matsushima: the Lie algebra of the
automorphism group of the manifold must be reductive. Futaki
introduced his beautiful invariant defined on this Lie algebra. The
Futaki invariant soon became a fundamental tool to study
Kähler-Einstein metric on Fano manifolds.

On the other hand, It took a long while to find a necessary and
sufficient condition for the existence of Kähler-Einstein metric on
Fano manifolds. Many people, including Calabi, was misled to
believe that the non-existence of nonzero holomorphic vector fields
is enough for the existence of Kähler-Einstein metric on Fano
manifolds.
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Right after I proved the Calabi conjecture on the existence of
Kähler metric with prescribed volume form, I tried to work on the
problem of the existence of Kähler-Einstein metric on Fano
manifolds.

It is clear that based on the (nontrivial) higher order estimates that
I had (independently due to Aubin for second order estimate) in
the proof of the Calabi conjecture, the only missing point is some
integral estimate of the Kähler potential. I found it is useful to set
up the continuity argument

det(gi j̄ +
∂2u

∂zi∂z̄j
) = exp(h − tu) det(gi j̄),

where t = 0 correspond to a Kähler metric with positive Ricci
curvature, as was given by the Calabi conjecture.
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A simple calculation shows that the Ricci curvature of all members
in the family have positive lower bound. This simplifies the
analysis quite a bit as we have experiences with compact manifolds
with Ricci curvature bounded from below by positive constant. In
1978, I returned to Stanford from my visit of Berkeley. At that
time, I succeeded to convince Stanford mathematics department to
hire Y.-T. Siu to come to Stanford from Yale.

We started to think about a proof of the existence of
Kähler-Einstein metric by finding some integral estimate of the
Kähler potential. Many estimates were found, but they are short of
proving the existence of the metric. Some of those estimates can
be sharpened if there are symmetries on the manifold, a procedure
similar to the way that Moser sharpened the Trudinger inequality
on the sphere when there is antipodal symmetry.
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In the meanwhile, I realized that Bogomolov used the concept of
stability of bundles to prove Chern number inequalities for
algebraic surfaces which were sharpened by Miyaoka and myself
independently. I started to believe there has to be links between
the concept of stability with the existence of Hermitian Yang-Mills
connections on bundles.

The fact that a holomorphic bundle admits a Hermitian Yang-Mills
connection if and only if the bundle is polystable was proved by
Uhlenbeck-Yau in arbitrary compact Kähler manifolds, and by
Donaldson in 2-dimension. Simpson observed that the proof of
Uhlenbeck-Yau can be used to settle the case when there is a
Higgs field. (Up to now, the Uhlenbeck-Yau argument is in fact
the only argument to prove such a statement.)
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The Bogomolov inequality is optimal for general stable bundles.
But it is not as sharp as the Miyaoka-Yau inequality when applied
to the tangent bundle of the manifold. Hence I suspected that
existence of Kähler-Einstein metric should be considered as a
nonlinear version of the existence of Hermitian Yang-Mills
connection, and the stability of bundle should be replaced by
manifold stability. Therefore only in early 1980s, I realized that the
right condition for existence of Kähler-Einstein metric is the
stability of the algebraic manifold.
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I made the conjecture that the existence of Kähler-Einstein metric
is equivalent to stability. I told all my graduate students about this
conjecture, especially to Gang Tian who showed interest in the
problem of Kähler-Einstein metric. But it took a long time to
convince him of the validity of my conjecture.

There are many ways to define stability of manifolds including the
concepts of Chow stability or Hilbert stability. I was not sure which
one is correct. But I started to explore it with my students in my
seminars. First of all, one had to make sure that algebraic stability,
which is defined by embeddings of algebraic manifolds into
complex projective space, can be linked to existence of
Kähler-Einstein metric.
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In fact, in order to link stability condition to algebraic geometry, I
proposed to prove any Hodge metric on an algebraic manifold can
be approximated by normalized Fubini-Study metric induced on the
manifold through embedding of the manifold into complex
projective space by high powers of an ample line bundle.

I asked Tian to follow this line of argument to finish the first step
of my conjecture on the equivalence of stability of Fano manifolds
with the existence of Kähler-Einstein metrics.

I suggested Tian to use my method with Siu on the uniformization
of Kähler manifolds to produce peak functions to achieve such a
goal. (The purpose of that paper with Siu was also embedding of
Kähler manifolds.)
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The proof was reasonably transparent using technology from my
paper with Siu. This became Tian’s thesis at Harvard.

The method can be said to be an understanding of the works of
Kodaira in the analytic setting. The work was carried out as I
expected and it was strengthened by Catlin, Zelditch and by Lu.

So, we know that we can approximate any Hodge metric by the
induced metric of the projective embedding of the manifold into
some complex projective spaces. However, there is an ambiguity
due to the action of complex projective group. This is of course
what geometric invariant theory studies.
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It turns out that when I studied first eigenvalue of the Laplacian
with Bourguignon and Peter Li, we need to find a good position
for the embedding upon action by the projective group, which we
called the balanced condition. It can be written in the following
form: ∫

σ(M)

zi z̄j

|z0|2 + · · ·+ |zN |2
ωn

FS =
vol(M)

N + 1
δij

for some σ ∈ SL(N + 1, C)

With such a condition, we can use the embedding to give a good
estimate of the first eigenvalue in terms of the total volume and the
degree defined by the Chern form wedge with the Kähler classes.
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I suggested this condition as a starting point to my former student
Luo to understand the concept of stability required to prove my
conjecture on the existence of Kähler-Einstein metric based on
stability. A theorem of Shouwu Zhang says that the existence of a
unique balanced embedding is equivalent to the manifold being
Chow-Mumford stabie.

Luo found it effective to change the measure in the above formula
defined by the induced measure of the ambient projective space.
And it turns out that for a polarized manifold (M, L) if there exists
a metric on L such that the Bergman function of Lk is constant for
some k, then it is Chow stable.
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My conjecture that the existence of Kähler-Einstein metric is
equivalent to stability was announced several times in several
conferences and was explicitly written in my article for the
proceedings of UCLA conference on differential geometry in 1990.

I also communicated to Tian in detail on how to understand the
Futaki invariant in this setting. The final conjecture of mine was
solved recently by Chen-Donaldson-Sun based on earlier works of
Donaldson including the right algebro-geometric definition of
K-stability.
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According to Donaldson, a Fano manifold is called K-stable if all
its non-trivial test configurations (which describe certain
degeneration of Kähler manifolds by flat families) have positive
Futaki invariants. For a test configuration X → C with C∗ action,
the Futaki invariant F1 can be found from the total weight wk of
C∗ acting on H0(X0, L

k), using

wk

kdk
= F0 + F1k

−1 + O(k−2)

where dk is the dimension of H0(X0, L
k).

47 / 72



But the condition of K-stability is not easy to check, even in the
case of surfaces. It would therefore be interesting to prove the
existence of balanced condition for high power embeddings of a
Fano manifold implies existence of Kähler-Einstein metrics. It is
highly desirable to clarify the condition of K -stability so that it can
be checked effectively.
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Hermitian-Yang-Mills connections

Hermitian metric on a complex manifold has a natural
generalization to Holomorphic bundles over complex manifolds.
Given a Hermitian metric on the bundle, there is a natural
connection which preserves the metric and also the (0, 1) part of
the covariant derivative would be the same as the naturally defined
∂̄ operator that depends only on the complex structure of the
bundle and the complex manifold. The curvature is a (1, 1)-form
with values in the endomorphism of the bundle.
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There is a natural generalization of the Kähler-Einstein condition
to this setting by wedging the curvature 2-form with the Kähler
form to the top dimension and require it to be a scalar multiple of
identity tensor with the volume form. This equation is the natural
generalization of anti-self-dual equations for bundles over a Kähler
surface.

In fact, around 1974, C.N. Yang was trying to solve the
anti-self-dual Yang-Mills equation on R4, and he showed that it
can be reduced to Cauchy-Riemann equations. And therefore he
demonstrated that the above equation is part of Yang-Mills
equations. It is therefore natural to call such connection to be
Hermitian Yang-Mills connection.

50 / 72



The equation became rather well known in the math community
after 1976, when people recognized the importance of applications
of Kähler-Einstein metric to complex geometry. The proof of the
existence of such connections would be clearly different as the
Calabi-Yau theorem was based on the complex Monge-Amperè
equation which depends only on a scalar. The Hermitian
Yang-Mills connection is a vector-valued equation. In 1977, I
discussed with Siu on this problem, but with no result, as it was
not clear what the obstruction would be.

In 1978, when I gave the talk at 1978 ICM in Helsinki, I thought
more about the possible obstructions. I conclude that it has to be
related to the slope stability of the holomorphic bundle as was
motivated by the work of Bogomolov and Miyaoka on Chern
number inequalities. I was informed that this was also observed by
Hitchin and Kobayashi independently.
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Donaldson-Uhlenbeck-Yau correspondence

However, the proof would have to be quite tough as there is no
good way to handle such a nonlinear system of elliptic equations.
It turns out that Donaldson and Uhlenbeck-Yau were working on
this problem independently. I learnt from Hitchin during a trip to
England that Donaldson was able to prove the existence for
Hermitian connections of any holomorphic vector bundle that can
be deformed to the tangent bundle of a K3 surface. (Note that the
Ricci-flat metric on a K3 surface provides a natural solution of the
Hermitian Yang-Mills connection on the tangent bundle.) This is of
course encouraging as it indicates the possibility of the conjecture.
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It turns out that Donaldson was concentrated on algebraic surfaces
and Uhlenbeck-Yau on arbitrary dimensional Kähler manifolds.
While Donaldson used the Bott-Chern form and the Hermitian
Yang-Mills flow, Uhlenbeck-Yau constructed a destabilizing sheaf
assuming the nonexistence of Hermitian Yang-Mills connection.

The proof of regularity of the destabilizing subsheaf took nontrivial
effort and as a result , our paper appeared later than the work of
Donaldson’s proof for algebraic surfaces. After we published our
work, Donaldson found that he can also do the higher dimensional
case by restriction of the bundle to hyperplane sections of the
algebraic manifold. (It was proved by Maruyama and
Mehta-Ramanathan that a stable bundle is stable on a generic
hyperplane section.)
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This later argument of Donaldson depends intrinsically on the
manifold being projective for higher dimensional manifolds, such as
the works of Simpson and the works of Bando-Siu, are based on
the procedure. However, the later development requires the
theorem to be generalized to non-Kähler manifolds. As was
acknowledged by Donaldson, the argument of Uhlenbeck-Yau is
most natural and in fact, all the later development for Hermitian
Yang-Mills connections for higher dimensional manifolds are based
on the procedure of Uhlenbeck-Yau.

Some later paper such as the one by Bando-Siu used the Hermitian
Yang-Mills flow to generalize our result, but the essential feature of
Uhlenbeck-Yau procedure is still needed in an essential manner. It
should also be pointed out that the continuity argument used by
Uhlenbeck-Yau is just as convenient as the Hermitian Yang-Mills
flow.
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A few years later, Carlos Simpson generalized the Uhlenbeck-Yau
argument to establish similar theorem when the Higgs field was
introduced. Hermitian Yang-Mills connections were proposed by
me to Edward Witten in 1984 to study heterotic string, which had
since became an important subject in mathematical physics. But
from the very beginning, we knew the importance of Hermitian
Yang-Mills connections.

55 / 72



Balanced metric and Strominger system

Kähler-Einstein metrics are very useful in biregular geometry. We
shall discuss it later. However, it cannot answer the important
question whether an algebraic manifold is rational or not. The
existence of Kähler metric is not a concept that is invariant under
birational transformations, while the existence of balanced metric
is. The concept of balanced metric was introduced by Michelson.
A Hermitian metric is called balanced if its Kähler form satisfied
the following equation:

d(ωn−1) = 0

and it was proved by Alessandrini and Bassanelli that its existence
is invariant under birational transformations. However, there is
much more freedom to deform a balanced metric than a Kähler
metric. Just demanding that Ricci curvature equal to zero is not
enough to determine a unique Balanced metric within the
(n − 1, n − 1) class.
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On the other hand, balanced metric comes up naturally in the
theory of Heterotic string theory in complex 3-dimension. And
(this) balanced condition is related to the concept of
supersymmetry. When there is a nonwhere vanishing top
dimensional holomorphic 3-form, we look for an Hermitian metric
which is balanced, and a stable holomorphic bundle (stable with
respect to the balanced metric) whose second Chern form is equal
to the second form given by the Hermitian metric.

Altogether, the following equations of the Strominger system need
to be satisfied:

(1) d(‖Ω‖ωΩ2) = 0

(2) F 2,0
h = F 0,2

h = 0, Fh ∧ ω2 = 0

(3)
√
−1∂∂̄ω = α′

4 (tr(Rω ∧ Rω)− tr(Fh ∧ Fh))
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It provides a natural generalization of the Calabi-Yau geometry,
which couples Hermitian metrics with Hermitian Yang-Mills theory.
my belief is that the above system of equations can be solved
when the obvious conditions hold. Jun Li and I solved this system
on any Calab-Yau manifold by making a deformation from the
original Calabi-Yau metric.
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For some intrinsically non-Kähler manifold, Fu and I solved the
Strominger system based on some ansätz for a 3-dimensional
complex manifolds obtained from the Calabi-Eckmann
construction. (The construction of the non-Kähler manifolds based
on Calabi-Eckmann construction was also observed by Goldstein
and Prokushkin.) It is a nonsingular complex torus bundle over the
K3 surface.

The proof of existence of nonsingular solution to the Strominger
system given by Fu-Yau is based on nontrivial estimates related to
complex Monge-Ampère equations. In order to understand the
significance of Strominger system, Tseng and I, and later with
Tsai, developed a new theory of symplectic cohomology which we
expect to be dual to this kind of geometry.
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Note that the existence of Ricci-flat Kähler metric provides a
reduction of holonomic group to a subgroup of SU(n), and
according to the work of Candelas-Horowitz-Strominger-Witten,
provides a supersymmetric model for vacuum solutions for Type II
string theory. They called such manifolds to be Calabi-Yau
manifolds. The Strominger system was introduced by Strominger
to study Heterotic string where the vacuum is a warped product
instead of a direct product.
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Questions of Kähler-Einstein metrics in algebraic geometry

There are several interesting consequences of the existence of
Kähler-Einstein metric.

A corollary of the above mentioned theorem of
Chen-Donaldson-Sun is that the K-stability of such manifold
implies that the tangent bundle is stable with respect to the
polarization given by the anticanoncial line bundle. This is an
interesting statement that is purely algebraic geometric, for which
it would be nice to have a proof based only on algebraic geometry.

Also it implies that a K-stable Fano manifold is biregular to CPn if
the ratio of its two Chern numbers c2c

n−2
1 and cn

1 is the same as
CPn.
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Understanding of Kähler-Einstein metrics near Singularities
Another interesting question is the following: If a smooth algebraic
manifold has Kodaira dimension either equal to the dimension of
the manifold or −∞, and if it is minimal in the sense in birational
geometry and the ratio of two Chern numbers c2c

n−2
1 and cn

1 is the
same as CPn, then the manifold is either CPn or complex ball
quotient.

For the case of general type, this is likely to be true. But it will be
good to allow singular minimal models and in the case of singular
algebraic manifolds, we need to define the Chern numbers suitably.
This is related to the question of what is the best Kähler-Einstein
metric on an algebraic manifold with singularity.

Let us look at the simplest case when the singularity is isolated. If
the Kähler metric is complete at the singularity, it is not hard to
prove that the Kähler-Einstein metric is unique. However, when it
is not complete, it is not necessarily unique. It depends on the
behavior of the volume form near the singularity. 62 / 72



What kind of volume forms are allowed? We need to know that
the Ricci form of this volume form is positive definite and that the
n-fold product of the Ricci form is asymptotic to this volume form
near the singularity. (We may require that the metric defined by
the Ricci form should have lower bound on its bisectional
curvature.)

It would be interesting to classify the asymptotic models of such
volume forms. In principe, each of them will give rise to a
canonical Kähler-Einstein metric with the given asymptotic
behavior of the volume form.
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It would be interesting to calculate the contribution of the
singularity towards the Chern numbers. An important case is the
canonical singularity appearing in the minimal model theory, which
we recall below.

Suppose that Y is a normal variety and f : X → Y be a resolution
of the singularities. Then

KX = f ∗(KY ) +
∑

i

aiEi

where the sum is over the irreducible exceptional divisors and the
rational numbers ai are called the discrepancies.

Then the singularities of Y are called canonical if ai ≥ 0 for all i
and called terminal if ai > 0 for all i .
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A 3-dimensional singularity is terminal of index 1 if and only if it is
an isolated composite DuVal (cDV) point in C4. A 3-dimensional
terminal singularity of index r ≥ 2 is a quotient of an isolated cDV
point in C4.

The important question is to find a good Kähler-Einstein metric in
a neighborhood of the cDV singularity which is invariant under the
group action. For orbifold singularities, one can use those metrics
obtained by pushing down from the nonsingular model before
quotient by the group.

65 / 72



On the other hand, there may be some other volume form that
satisfies the above properties that is distinct from the orbifold
construction. The complicated situation is the case that the Ricci
form of the volume form may define a metric that is partially going
to complete and partially degenerate at the singular point.

It will be important to construct nice model volume form in a
neighborhood of the canonical singularities of the manifold whose
Ricci form can give rise to a nice metric which is asymptotically
Kähler-Einstein.
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Kähler-Einstein metrics on quasiprojective varieties and
Sasakian-Einstein metrics

In my first paper on the Calabi conjecture, we know that given any
Kähler class, we can find a Kähler metric which may degenerate
along a divisor whose volume is given by the unique volume defined
by the divisor of the pluricanonical sections. How to calculate the
second Chern class related to this divisor would be important. The
Chern numbers calculated by the degenerate Ricci flat metrics
should have residue from the divisor. It would be important to
calculate this contribution.
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The noncompact version of complete Ricci-flat metric is more
complicated, partially because we lack of a good model space to
build a good ansatz. At 1978 ICM in Helsinki, I announced the
way to build complete noncompact Ricci-flat manifolds.

I conjectured that the manifold can be written as the complement
of a divisor D of a compact Kähler manifold M. (It was pointed
out by Michael Anderson et al. that we should assume the
finiteness of the topology of the manifold, otherwise Taub-NUT
manifolds can provide counterexamples.)
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My program was to take D to be an anticanonical divisor of M
which cannot be contracted to a codimension two subvarity. There
will be a holomorphic volume form on M which has poles along D.
I expect that this is close enough to provide a necessary and
sufficient condition for M\D to admit complete Kähler metric with
zero Ricci curvature. When D is nonsingular, I have worked out
the program. The details were written up with Tian in two papers.

69 / 72



However, when D has normal crossing singularities, the problem is
unsolved, largely because we do not have a good model of
complete Ricci-flat metric in a neighborhood of D when D has
singularity. An important and interesting case is to allow the
complete Kähler metric to have certain type of singularities.
Besides quotient singularity, we can allow cone singularity.

In the last case, the interesting examples are metric cones over a
Sasakian-Einstein manifold. Important progress was made by
Gauntlett, Martelli, Sparks and myself on the existence of
Sasakian-Einstein metrics. We gave several obstructions to their
existence by studying the Einstein-Hilbert functional restricted to
the space of Sasakian-Einstein metrics where it becomes essentially
the volume functional. It can further be shown to be a functional
of the Reeb vector field associated to the Sasakian structure alone.
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We obtain a useful obstruction from the Lichnerowicz bound on
the Laplacian which we could identify preicsely as the physics
criterion of a unitarity bound in the conformal field theory
associated to the hypersurface singularity. We also show that the
first variation of the volume functional is related to the Futaki
invariant on the Kähler orbifold, hence volume minimization (and
a-maximization in the physics language) implies vanishing of Futaki
invariant. This includes the cases of regular and quasi-regular
Sasakian structures as classified by Reeb vector orbits.

In the irregular case, Collins and Székelyhidi extended the notion of
K-semistability to Sasakian structures, showing constant scalar
curvature Sasakian metric implies K-semistability and also
recovered our results based on the volume functional. The
complete classification is still not known, even for complex
hypersurfaces with isolated singularity which admits C∗-action.
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Thank you!
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