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Plan of the talk
1 KPZ equation [1]

- Ill-posedness, Renormalization
- KPZ approximating equation-1: simple
- Cole-Hopf solution, linear stochastic heat equation
- KPZ approximating equation-2:
suitable for finding invariant measures

- Invariant measures of Cole-Hopf solution of KPZ eq

2 Coupled KPZ equation [2]
- Coupled KPZ equation
- Two approximating equations
- Expansions
- Convergence results due to paracontrolled calculus

- Difference of two limits
—————————
[1] F-Quastel, Stoch. PDE: Anal. Comp., 3 (2015)

[2] F, Seminaire de Probab., LNM, 2137 (2015), special issue for M. Yor
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1. KPZ equation

The KPZ (Kardar-Parisi-Zhang, 1986) equation describes
the motion of growing interface with random fluctuation.

It has the form for height function h(t, x):

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + ξ(t, x), x ∈ T (or R). (1)

where T ≡ R/Z = [0, 1).

ξ(t, x) is a space-time Gaussian white noise with mean 0
and correlation function:

E [ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y). (2)
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Ill-posedness of the KPZ eq (1)

The nonlinearity and roughness of the noise do not match.

The linear SPDE:

∂th = 1
2
∂2
xh + ξ(t, x),

obtained by dropping the nonlinear term has a solution
h ∈ C

1
4
−, 1

2
−([0,∞)× R) a.s. Therefore, no way to define

the nonlinear term (∂xh)
2 in (1) in a usual sense.

Actually, the following Renormalized KPZ eq with
compensator δx(x) (= +∞) has the meaning:

∂th = 1
2∂

2
xh + 1

2{(∂xh)
2 − δx(x)}+ ξ(t, x).
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KPZ approximating equation-1: Simple

Symmetric convolution kernel Let η ∈ C∞
0 (R) s.t.

η(x) ≥ 0, η(x) = η(−x) and
∫
R η(x)dx = 1 be given, and

set ηε(x) := 1
ε
η( x

ε
) for ε > 0.

Smeared noise ξε(t, x) = ξ(t) ∗ ηε(x)
Approximating Eq-1:

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
+ ξε(t, x),

where

cε =

∫
R
ηε(y)2dy

(
=

1

ε
∥η∥2L2(R)

)
.
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Cole-Hopf solution to the KPZ equation

Consider the Cole-Hopf transform: Z = Z ε := eh, then Z
satisfies

∂tZ = 1
2
∂2
xZ + Zξε(t, x).

(The product Zξε is defined in Itô’s sense.)

Indeed, apply Itô’s formula for z = eh to see

∂tZ = Z∂th +
1
2
Z (∂th)

2

= 1
2
Z{∂2

xh + (∂xh)
2 − cε}+ Zξε + 1

2
Zcε

= 1
2
∂2
xZ + Zξε,

since Z{∂2
xh + (∂xh)

2} = ∂2
xZ .
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It is not difficult to show (Bertini-Giacomin ’97) that
Z = Z ε converges to the sol Z of the linear stochastic
heat equation (SHE) (defined in Itô’s sense):

∂tZ = 1
2
∂2
xZ + Zξ(t, x), (3)

with a multiplicative noise. This is a well-posed eq.

This implies that the solution h = hε of the
approximating KPZ equation-1 converges to the
Cole-Hopf solution of the KPZ eq. defined by

hCH(t, x) := log Z (t, x). (4)
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KPZ approximating equation-2: Suitable for studying inv meas

We consider another KPZ approximating equation:

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
∗ ηε2 + ξε(t, x), (5)

where η2(x) = η ∗ η(x), ηε2(x) = η2(x/ε)/ε.

(F-Quastel [1]) The distribution of B ∗ ηε(x), where B is
the periodic Brownian motion (in case T) or the
two-sided Brownian motion (in case R), is invariant for hε
determined by (5).
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Cole-Hopf transform for SPDE (5)

The goal is to pass to the limit ε ↓ 0 in the KPZ
approximating equation (5):

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − cε
)
∗ ηε2 + ξε(t, x).

F-Quastel [1] considered its Cole-Hopf transform:
Z (≡ Z ε) := eh. Then, by Itô’s formula, Z satisfies the
SPDE:

∂tZ = 1
2∂

2
xZ + Aε(x ,Z ) + Zξε(t, x), (6)

where

Aε(x ,Z ) =
1

2
Z (x)

{(
∂xZ

Z

)2

∗ ηε2(x)−
(
∂xZ

Z

)2

(x)

}
.

The complex term Aε(x ,Z ) looks vanishing as ε ↓ 0.
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But this is not true. Indeed, under the average in time t,
Aε(x ,Z ) can be replaced by a linear function 1

24
Z .

The limit as ε ↓ 0 (under stationarity of tilt),

∂tZ = 1
2
∂2
xZ+

1
24
Z + Zξ(t, x).

Or, heuristically at KPZ level,

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ 1

24
+ ξ(t, x).

Or one can say that the limit h(t, x) of the KPZ
approximating eq-2 (5) is given by

h(t, x) = hCH(t, x) +
1
24
t,

where hCH(t, x) denotes the Cole-Hopf solution.
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Taking the limit ε ↓ 0 (Similar to Boltzmann-Gibbs principle)

Asymptotic replacement of Aε(x ,Z ε(s)) by 1
24Z

ε(s, x).

To avoid the complexity arising from the infiniteness of invariant
measures, we view hε(t, ρ) =

∫
hε(t, x)ρ(x)dx (height averaged by

ρ ∈ C∞
0 (R),≥ 0,

∫
ρ(x)dx = 1) in modulo 1 (called wrapped

process).

Theorem 1

For every φ ∈ C0(R) satisfying supp φ ∩ supp ρ = ∅, we have that

lim
ε↓0

Eπ⊗νε

[{∫ t

0

Ãε(φ,Z ε(s))ds

}2
]
= 0,

where π is the uniform measure for hε(0, ρ) ∈ [0, 1),

Ãε(φ,Z ) =

∫
R
Ãε(x ,Z )φ(x)dx

Ãε(x ,Z ) = Aε(x ,Z )− 1
24Z (x).
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Invariant measures of Cole-Hopf solution

As a byproduct, one can give a class of invariant measures for
the Cole-Hopf solution of the KPZ equation. (We state results
only on R.)

Let νc be the distribution of B(x) + c x , where B(x) is
the two-sided Brownian motion s.t. νc(B(0) ∈ dx) = dx .
Note that these are not probability measures.

Then, {νc}c∈R are invariant under the Cole-Hopf solution
of the KPZ equation.

c means the average tilt of the interface. We have
different invariant measures for different average tilts.
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2. Coupled KPZ equation

(Ferrari-Sasamoto-Spohn 2013) Rd -valued coupled KPZ
equation for h(t, x) = (hα(t, x))dα=1 on T (or R):

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ∂xh

β∂xh
γ + σα

β ξ
β, x ∈ T. (7)

We use Einstein’s convention.
ξ(t, x) = (ξα(t, x))dα=1 is an Rd -valued space-time
Gaussian white noise with the covariance structure

E [ξα(t, x)ξβ(s, y)] = δαβδ(x − y)δ(t − s).

(σα
β )1≤α,β≤d , (Γ

α
βγ)1≤α,β,γ≤d are given constants.

From the form of the equation (7), the constants Γαβγ
ought to satisfy

Γαβγ = Γαγβ for all α, β, γ. (8)
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Two approximating equations

Symmetric convolution kernels η ∈ C∞
0 (R) and ηε, ηε2 are

given similarly as before.

Simple approximating equation with smeared noise:

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ(∂xh

β∂xh
γ − cεAβγ) + σα

β ξ
β ∗ ηε,

(9)
where Aβγ =

∑d
δ=1 σ

β
δ σ

γ
δ and cε = 1

ε
∥η∥2L2(R) is the same

as before.
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Approximation suitable for studying invariant measures:

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ(∂xh

β∂xh
γ − cεAβγ) ∗ ηε2 + σα

β ξ
β ∗ ηε,
(10)

For the solution of (10), F [2] showed (on R), under the
additional condition:

Γαβγ = Γγαβ (11)

and σα
β = δαβ (Kronecker’s δ), the infinitesimal invariance

of the distribution of B ∗ ηε(x), where B is the Rd -valued
two-sided Brownian motion.
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When d = 1 and Γαβγ = σα
γ = 1 for simplicity, the

approximating equations (9) and (10) have the forms:

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
+ ξ ∗ ηε, (12)

and

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
∗ ηε2 + ξ ∗ ηε, (13)

respectively, as we have already discussed.
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Goal

As we saw, the solution of (12) converges as ε ↓ 0 to the
Cole-Hopf solution hCH(t, x) of the KPZ equation, while
the solution of (13) converges to hCH(t, x) +

1
24
t under

the equilibrium setting (F-Quastel) and also under the
non-equilibrium setting (Hoshino).

The method of F-Quastel is based on the Cole-Hopf
transform, which is not available for the coupled equation
with multi-components in general.

Our goal is to study the limits of the solutions of (9) and
(10) as ε ↓ 0 based on the paracontrolled calculus
(Gubinelli and others).

In particular, we study the difference between these two
limits.
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Expansion

We think of the noise as the leading term and the
nonlinear term as its perturbation by putting (small
parameter) a > 0 in front of the nonlinear term, though
we eventually take a = 1.

Lhα =
a

2
Γαβγ∂xh

β∂xh
γ + σα

β ξ
β,

where L = ∂t − 1
2
∂2
x .

We expand the solution h of the coupled KPZ eq (7) in a:
hα =

∑∞
k=0 a

khαk . Then, we have

∞∑
k=0

akLhαk = σα
β ξ

β +
a

2

∞∑
k1,k2=0

ak1+k2Γαβγ∂xh
β
k1
∂xh

γ
k2
.
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Comparing the terms of order a0, a1, a2, a3, . . . in both
sides and noting the condition (8), we obtain the
followings:

Lhα0 = σα
β ξ

β,

Lhα1 =
1

2
Γαβγ∂xh

β
0∂xh

γ
0 ,

Lhα2 = Γαβγ∂xh
β
0∂xh

γ
1 ,

Lhα3 = Γαβγ∂xh
β
0∂xh

γ
2 +

1

2
Γαβγ∂xh

β
1∂xh

γ
1 ,

· · ·
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By replacing ξβ by ξβ ∗ ηε and taking care of the factor
−cεAβγ, we have the expansion of the solution of the
equation (9) (simple approximating eq):

hα,ε =
∞∑
k=0

akhα,εk

and the equations:

Lhα0 = σα
β ξ

β ∗ ηε,

Lhα1 =
1

2
Γαβγ(∂xh

β
0 ∂xh

γ
0 − cεAβγ),

Lhα2 = Γαβγ∂xh
β
0 ∂xh

γ
1 ,

Lhα3 = Γαβγ(∂xh
β
0 ∂xh

γ
2 − Bβγ,ε) +

1

2
Γαβγ(∂xh

β
1 ∂xh

γ
1 − Cβγ,ε),

· · ·
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Furthermore, we have the expansion

h̃α,ε =
∞∑
k=0

ak h̃α,εk

of the solution of the equation (10) (approximation
suitable for studying invariant measures) and the
equations:

Lh̃α0 = σα
β ξ

β ∗ ηε,

Lh̃α1 =
1

2
Γαβγ(∂x h̃

β
0 ∂x h̃

γ
0 − cεAβγ) ∗ ηε2 ,

Lh̃α2 = Γαβγ∂x h̃
β
0 ∂x h̃

γ
1 ∗ ηε2 ,

Lh̃α3 = Γαβγ(∂x h̃
β
0 ∂x h̃

γ
2 − B̃βγ,ε) ∗ ηε2 +

1

2
Γαβγ(∂x h̃

β
1 ∂x h̃

γ
1 − C̃βγ,ε) ∗ ηε2 ,

· · ·
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After defining hα0 , . . . , h
α
3 (actually, +one more term hα4 )

in the above way, we consider the equation for extra term
and solve it by fixed point theorem in a suitable space
(controlled by these driving terms). Similar for h̃.

Our notation and those in [Hairer, Gubinelli] studying the
case d = 1 correspond with each other as follows:

h0 = , h1 = , h2 = , h3 = + ,

cεAβγ = ,C βγ,ε = ,Bβγ,ε = .
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Convergence results due to paracontrolled calculus
(rough formulation)

Convergence of driving terms:
∃hαi (i = 0, 1, . . . , 4; indeed, two terms in hα3 should be
considered separately) s.t.

hα,εi →
ε↓0

hαi and h̃α,εi →
ε↓0

hαi in C ([0,T ],Cκi (T)),

where κ0 = µ, κ1 = 2µ, κ2 = µ+ 1, κ3 = 2µ+ 1,
κ4 = 2µ− 1(< 0) with µ ∈ (1

3
, 1
2
).

If driving terms (hα,εi ) converges to (hαi ), then the
solutions of the KPZ equations with these driving terms
converge in C ([0,T ],Cµ(T)).
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Example

Assume the condition (11) (the condition we assumed for
studying the stationarity) in addition to (8) and
(σα

β ) = σI with σ ∈ R and a unit matrix I .

In this case, we have

h̃α(t, x) = hα(t, x) + cαt, 1 ≤ α ≤ d ,

in the limit, where

cα =
σ4

24

∑
β,γ,γ1,γ2

ΓαβγΓ
β
γ1γ2

Γγγ1γ2 .
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Summary of the talk.

1 KPZ equation:

∂th = 1
2∂

2
xh + 1

2 (∂xh)
2 + ξ(t, x), x ∈ R.

2 KPZ approximating equation with ξε(t, x) = ξ(t) ∗ ηε(x):

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − cε
)
∗ ηε2 + ξε(t, x)

has invariant measure νε (=distribution of B ∗ ηε).

3 As ε ↓ 0, hε converges to hCH(t, x) +
1
24 t.

4 To study the limits of two types of coupled KPZ approximating
equations, we apply Gubinelli’s paracontrolled calculus.
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Thank you for your attention!
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