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Abstract

The gravitational interaction has two unique features: universal and attractive.
These fundamental requirements for any gravity theory are intimately
associated with energy and its positivity. From the gravitational response,
because it is universal, one can uniquely detect the presence of any physical
energy-momentum, even if it is associated with some kind of otherwise
non-interacting source, i.e., “dark.” Note that energy and momentum can be
exchanged between the gravitational field and its sources, and this happens
locally, yet, curiously, the energy of gravitating systems—and hence the
energy of all physical systems—is essentially elusive; for fundamental
reasons it cannot be localized. It is simply not possible to find a proper
energy-momentum density; instead there are only various quasi-local (i.e.,
associated with a closed 2-surface) expressions, which, moreover, are
inherently reference frame dependent. We have found that the Hamiltonian
approach tames both of these perplexing classical ambiguities. We identified
one quasi-local Hamiltonian boundary expression for Einstein’s gravity theory,
general relativity, which is physically distinguished; furthermore we have a
procedure which identifies the “best” quasi-local reference frame.
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Outline

◮ symmetry & Noether
◮ interactions
◮ special nature of gravity: universal & attractive
◮ attractive

◮ attraction ∼ positive energy
◮ positive energy test & positive energy proofs
◮ application: the galaxy rotation problem.

Alternative gravity vs dark matter
◮ energy conditions
◮ some energy values
◮ cosmology
◮ dark energy
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◮ some arguments and observations re energy
◮ universal

◮ the energy of gravitating systems, localization
◮ quasi-local quantities
◮ Hamiltonian approach
◮ Hamiltonian boundary term
◮ the role of boundary conditions
◮ thermodynamics example
◮ quasi-local expressions
◮ application: electrodynamics
◮ application: gravity. pseudotensors rehabilitated
◮ achievements, current work & outstanding issues

◮ summary
◮ References
◮ a final word
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◮ ◮ 20th century physics theory is mainly about symmetry.
◮ Noether’s first theorem associates conserved quantities

with global symmetries
◮ Noether’s 2nd theorem concerns local symmetries: it is the

foundation of the modern gauge theories.
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PHYSICAL INTERACTIONS

⋄ Presently there are 4 known physical interactions:
1. strong,
2. weak,
3. electromagnetic, &
4. gravity.

◦ Gravity is very special:
it is the only interaction that is

(i) universal, and
(ii) purely attractive.

⊲ Contrast with a familiar example: the electric and magnetic force shows
⋆ attraction,
⋆ repulsion, and
⋆ neutrality.

These two unique properties of gravity have deep significance in the scheme
of things; they are not at all accidental but rather are essential consequences
of fundamental principles, they naturally play key roles in many situations.
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Attraction

The purely attractive property of gravity is required by the
fundamental physical principles of thermodynamics & stability:
⋆ no perpetual motion, no infinite source of energy.

Consider a gravitating system
⋆ repulsion would be caused by a negative mass.

Can a negative mass exist?

⋆ Imagine a positive and negative mass pair. They would attract
and repel each other, self accelerating to a high speed, gaining
large kinetic energy that could be extracted. In this way one
could have an unlimited source of energy.

As my thermodynamics Prof explained,
“If this were possible I could get rich, but that will never happen”
⊲ This is not allowed.

◦ Purely attractive ≃ positive mass.
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Attraction ≈ POSITIVE ENERGY

In the far (weak) field regime the energy of a gravitating system
is determined by its effective Newtonian mass.
This can be found from Kepler’s 1-2-3 law: (GM)1 = ω2a3.

Einstein’s most famous relation,

E = MC2,

then tells us that
⊲ the energy of gravitating systems is positive.
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• Moreover physical systems naturally radiate energy until they
reach their lowest energy state. If an isolated system could
have negative energy, we could combine such systems to make
one with a negative energy of arbitrarily large magnitude.
Allowing such negative energy states would permit systems to
radiate an infinite amount of energy. Physical systems are
unstable unless there is a non-negative lower bound to energy.
Hence energy must be positive, i.e, gravity is purely attractive.

◦ This should be satisfied by any acceptable gravity theory.
⊲ So it can be used to test proposed gravity theories.
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Test and proof

◦ Positive energy is a strong test:
it is very hard to create a relativistic theory which satisfies this
requirement under all conditions.
• For an acceptable gravity theory we want a proof that every
physical solution has positive energy.
⋆ That is not at all easy.
• People worked seriously on trying to prove positive energy for
Einstein’s general relativity theory for at least 20 years until the
first proof (by an indirect geometric argument) was obtained by
Schoen and S.T. Yau in 1979.
⋆ Witten presented his much more direct spinor proof in 1981,
see e.g., Nester [’81,’84]. Later I found several other proofs
[IJMPA ’89, PRD ’94, GRG ’99].

Thus Einstein’s GR passes this important test
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An application at the galactic scale

◦ We have very high precision accurate gravity experiments on
the lab and solar system scales.

⊲ However on much larger scales, like that of our galaxy, the
agreement between theory and observations is not clear.

⊲ Obviously something holds galaxies together, and gravity is
the only realistic explanation.

11



The galactic rotation curve problem

⋆ However when we examine the galaxies in detail something
doesn’t fit.
[Problems were first noticed by Zwicky in the 1930s]

⋆ In the 1970s Vera Rubin noted that the outer parts of spiral
galaxies are rotating several times faster than one would expect
based on the observed mass distribution.

expected v2 ∼ GM

r
, observed v ∼ const
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How can this be understood?
◦ We can learn from history .

Discrepancies in the orbit of an outer planet led to the discovery
of previously undetected matter: a new planet

⋆ This happened twice:
(i) Uranus led to Neptune,
(ii) then Neptun led to Pluto.

◦ On the other hand, attempts to account for Mercury’s orbit
discrepancy by finding a new inner planet failed;
eventually the problem was resolved
by replacing Newton’s theory with a new theory: Einstein’s GR .
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◦ Similarly, for the galaxy we could account for the rotation
problem by assuming that there is some additional undetected
material, given the name

⊲ dark matter (because you cannot see it).

Surprisingly, the necessary amount of dark matter
⊲ would have to be

(i) about 10 times as much as the observed matter;
(ii) it must have a very different distribution, &
(iii) must be made of an unfamiliar substance.

naturally many have doubts that
⊲ we are totally ignorant of 90% of the material in the universe.

(We can only conclude that it exists—because gravity is
universal).
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◦ The alternative is to modify the gravity theory.

(We tried this: [N & Zhytnikov, PRL 1994].)

⋄ It is not so difficult to create a theory which could explain both
the solar system and galactic observations.

Unfortunately,
⊲ all such theories must violate some principle that we trust,
e.g.,

⋆ the positive energy principle,
⋆ 1st or 2nd order field eqns,
⋆ linear for weak fields .

So our best present idea : there is a lot of dark matter,

⋆ and so there is a lot of work yet for scientists to figure out
what the universe is made of.
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Refinement: material source energy conditions

For all timelike observers uµ:

weak: energy density

Tµνu
µuν ≥ 0, ρ ≥ 0, ρ + p ≥ 0

dominant: future timelike e-m flow vector ⇒ positive energy

pµ := −T µ
νu

ν , ρ ≥ |p|

strong: gravity is attractive

(Tµν −
1

2
gµνT )u

µuν ≥ 0, ρ+ p ≥ 0, ρ+ 3p ≥ 0

The above includes the specific form for a perfect fluid

T µν = (ρ+ p/c2)uµuν + pgµν .
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FLRW cosmology

Gµν + Λgµν =
8πG
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DARK ENERGY

◦ After many decades of improving measurements,
observations apparently indicate that, contrary to
expectations,
⊲ the universe is not slowing down!
It is expanding faster and faster, accelerating!

ä

a
> 0 !

a kind of global repulsion—this may be seen as a challenge to
our gravity is purely attractive principle.
The cause of this has been given a name: dark energy .

Dark energy could be a (quite small) positive cosmological
constant or by some unusual type of matter with sufficiently
large negative pressure which causes the repulsion.
Gravity itself may still have positive energy.
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Is positive energy always required?

When should the energy of a physical system be positive?

1. For asymptotically flat regions that are approaching an
equilibrium state.
2. For a very small spacetime region.

Note:
A: This is only possible if the non-gravitational sources satisfy
some suitable energy condition.
B: Not all useful energy measures will satisfy these conditions.
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Some quasi-local energy values

[N, So & Vargas, PRD 2008]
[Wu, Chen, Liu & N, PRD 2011; GRG 2012]

Reissner-Nordström ERN =
2m− q2/r

1 +
√

1− 2m/r + q2/r2

Note 1: not defined between the 2 roots r+, r− of the radical,
Note 2: the value is negative for sufficiently small r.

For the Friedmann-Lemaı̂tre-Robertson-Walker cosmology

EFLRW =
akr3

1 +
√
1− kr2

, k = −1, 0,+1

Note: EFLRW ∝ k, the sign of the spatial curvature.

For Bianchi cosmological models, for a homogeneous
reference, for all regions, the energy of class A models
vanishes and it is negative for all class B models.
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Universal

• Gravity is universal. The source of gravity is all matter and all
interaction fields including itself.

◦ In Newton’s theory mass density produced gravity.

* From Einstein’s relation we know that “energy” is equivalent to
mass. Hence energy (density) should also produce gravity.

* Moreover, from special relativity covariance we learn that
energy is a part of a 4-vector of energy-momentum.

* Hence, relativistically, we expect the total energy-momentum
density to produce gravity.

◦ Energy-momentum should be conserved. Sources interact
with the gravitational field, and exchange energy-momentum
with gravity.
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Voyager

energy and momentum can

be exchanged through the gravitational field.
This happens locally.
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The binary pulsar

Indirect evidence for
gravitational waves and gravitational energy
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The Tweedle twins

Bondi’s gedanken experiment
energy transferred through empty space by gravity
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Jupiter’s tidal heating powers Io’s volcanoes
[Purdue (1999), Booth & Creighton (2000), Favata (2001)]
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doubts

Some question the whole idea, e.g.,

◮ F. I. Cooperstock, Ann Phys (NY) 282 (2000) 115
arXiv:gr-qc/9904046.

gravitational e-m +material e-m = − c4

8πG
Gµν + Tµν = 0

◮ the total energy-momentum density vanishes everywhere
◮ The Einstein tensor is the energy-momentum density of

gravity
◮ This was first suggested by Levi-Civita.
◮ According to my thinking it is almost correct! This is the

correct volume density, but—as we shall see—one also
needs to include a surface density term.
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Feynman & Christodoulou

In 1957 Feynman gave a simple argument that gravity waves
carried energy and could be detected.
This involved 2 beads sliding on a rod and heating the rod.

In 1968 Wheeler asked Christodoulou to show “the formation of
black holes in pure general relativity, by the focusing of
incoming gravitational waves”.

After 40 years he finally succeeded, see
Christodoulou The formation of black holes in General Relativity
(European Math Society, 2009)

Christdoulou’s result should dispel all doubts regarding the
reality of gravitational energy in the vacuum and its essentially
attractive/positive-energy nature.
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gravitational local energy-momentum density

Thus gravity itself should have some kind of local
energy-momentum density—which should also produce gravity:

Hence gravity should be inherently non-linear, truly universal: it
affects and is affected by everything, including itself.

Note that both special properties: universal and attractive
are associated with energy.
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Einstein’s energy expressions of 1913
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◮ such energy-momentum expressions are not tensors
◮ they are inherently reference frame dependent
◮ such energy-momentum pseudotensors can be obtained
◮ via Lagrangian & Noether symmetry

(Note: Noether current ambiguity)
◮ via rearranging field equations

(Note: equally ambiguous)

◮ Amazingly, in the paper with her 2 famous theorems that
are so important for fundamental physics theory Emmy
Noether proved also that the energy-momentum
density—not only for Einstein’s GR but also for any
geometric gravity theory—cannot be a proper quantity.

◮ pseudotensor ambiguities: which pseudotensor, which
reference frame?

Famous pseudotensors: Einstein, Landau & Lifshitz,
Papapetrou (’48), Bergmann (’53), Goldberg (’58), Møller (’58),
Møller (’61), Weinberg (’72).
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◮ Misner, Thorne & Wheeler
“Anyone who looks for a magic formula for “local
gravitational energy-momentum” is looking for the right
answer to the wrong question. Unhappily, enormous time
and effort were devoted in the past to trying to “answer this
question” before investigators realized the futility of the
enterprize.” MTW Gravitation p 467.
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Geometry and gravity: Quasi-local energy-momentum

Gravity is necessarily connected with geometry.

• The source of gravity is energy-momentum.

◦ By Noether’s first theorem associating physically conserved
quantities with symmetry, energy-momentum is related to the
translation symmetry of space-time geometry.

According to the equivalence principle “gravity cannot be
detected at a point.”

• A consequence is that gravitational energy-momentum—and
hence the energy-momentum of gravitating systems—and
hence the energy-momentum of all physical systems—is
fundamentally non-local.
◦ All physical energy-momentum is quasi-local!
(associated with a closed 2-surface).
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Outline for technical part

◮ Energy-momentum and its localization
◮ Quasi-local quantities:

◮ Hamiltonian approach
◮ role of the boundary terms
◮ covariant Hamiltonian formalism
◮ boundary conditions from boundary variation principle
◮ quasi-local expressions

◮ Application: electromagnetism
◮ Application: Einstein gravity
◮ How to choose the reference

◮ Summary
◮ References
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pseudotensor Hamiltonian boundary term association

Choose any Hνλ
µ ≡ H [νλ]

µ, and use it to split the Einstein
tensor. Define the gravitational energy-momentum
pseudotensor by

κ
√−gtµν := −√−gGµ

ν +
1

2
∂λH

µλ
ν .

Then Einstein’s equation, Gµ
ν = κT µ

ν , takes a form with the
total effective energy-momentum pseudotensor as its source:
[Chang, N, Chen, PRL ’99]

∂λH
µλ

ν = 2κ
√−gT µ

ν := 2κ
√−g(tµν + T µ

ν).

−P (N) := −
∫

V

NµT ν
µ

√−g(d3x)ν

≡
∫

V

[

Nµ
√−g(

1

κ
Gν

µ − T ν
µ)−

1

2κ
∂λ(N

µHνλ
µ)
]

(d3x)ν

≡
∫

V

NµHµ +

∮

S=∂V

B(N) ≡ H(N).
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Quasi-local quantities: Hamiltonian approach

◮ Energy can be identified as the value of the Hamiltonian
associated with a timelike displacement vector field N .

◮ The Hamiltonian H(N) is given by an integral of a suitable
Hamiltonian 3-form (density) H(N) over a 3-dimensional
(spacelike) region Σ along N .

◮ This 3-form is always linear in the displacement N and its
derivatives which can always be written in the form

H(N) = NµHµ + dB(N).

◮ Thus the Hamiltonian generally includes an integral over
the boundary of the region.

H(N) =

∫

Σ
H =

∫

Σ
NµHµ +

∮

∂Σ
B(N).

◮ The two parts of the Hamiltonian have distinct roles.

36



Quasi-local quantities: role of the boundary term

◮ The 3-form part NµHµ generates the equations of motion.
⊲ As we shall see, for diffeomorphic invariant theories it
has vanishing value.

◮ The Hamiltonian generally includes a boundary term B(N).
◮ It plays two key roles:

(i) It determines the values of the quasi-local quantities,
(ii) It determines the boundary conditions.
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Technical details: Noether translational current

◮ The first order Lagrangian for an f-form field ϕ and its
conjugate momentum is p is given by

L = dϕ ∧ p− Λ(ϕ, p).

◮ The variation

δL = d(δϕ ∧ p) + δϕ ∧ δL
δϕ

+
δL
δp

∧ δp,

gives the EOM

δL
δp

:= dϕ− ∂pΛ = 0,
δL
δϕ

:= −ςdp − ∂ϕΛ = 0,

and ς := (−1)f .
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◮ Diffeomorphism invariance (in terms of the Lie derivative)
requires

diNL ≡ £NL ≡ d(£Nϕ ∧ p) +£Nϕ ∧ δL
δϕ

+
δL
δp

∧£Np.

◮ Hence the “translational current” (3-form)

H(N) = £Nϕ ∧ p− iNL

satisfies the conservation law

−dH(N) ≡ £Nϕ ∧ δL
δϕ

+
δL
δp

∧£Np. (∗)

◮ Like other Noether conserved currents, H(N) is not
unique: it can be modified by adding the differential of any
2-form.
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Technical details: local diffeomorphism invariance

◮ With geometric gravity included, we have also local
diffeomorphism invariance, which gives rise to a differential
identity.

◮ Explicit calculation shows that H(N) = £Nϕ ∧ p− iNL
always has the form

H(N) = NµHµ + dB(N).

◮ By substituting into Eq.(*) we find that

d(NµHµ + dB(N)) ≡ dNµ ∧Hµ +NµdHµ

is proportional to the field equations, therefore Hµ

vanishes “on shell”.

◮ Hence for gravitating systems the Noether translational
“charge” — energy-momentum — is quasi-local, it is given
by the integral of the boundary term, B(N).

◮ But this boundary term can be completely modified to any
value.
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Quasi-local quantities: covariant Hamiltonian
formalism

◮ The Hamiltonian approach tames the ambiguity.
◮ Generalizing L = q̇p−H, from the first order Lagrangian

one can construct the Hamiltonian 3-form by projecting
along a “timelike” displacement vector field:

iNL = £Nϕ ∧ p−H(N).

◮ As noted it can be written in the form

H(N) = NµHµ + dB(N),

consequently the quasi-local energy is then determined
only by the surface integral

E(N) =

∫

Σ
H(N) =

∫

Σ
NµHµ + dB(N) =

∮

∂Σ
B(N).
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Quasi-local quantities: boundary conditions

◮ The Hamiltonian boundary terms determines the values of
the quasi-local quantities.

◮ Energy is given by a suitable timelike displacement
◮ Linear momentum is obtained from a spatial translation
◮ Angular momentum from a suitable rotational displacement
◮ A spacetime displacement which is asymptotically a boost

will give the center-of-mass moment.

◮ But our Noether analysis has revealed that B(N) can be
adjusted, changing to a new conserved value.

◮ However the variational principle contains an additional
(largely overlooked) feature which distinguishes all of these
choices.
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◮ The boundary variation principle, i.e. the boundary term in
the variation, tells us what to hold fixed on the boundary —
it determines the boundary conditions.

◮ The different Hamiltonian boundary terms are each
associated with distinct boundary conditions.

◮ As in thermodynamics or electrostatics there are various
“energies” which correspond to how the system interacts
with the outside through its boundary.

◮ An example: Thermodynamics

(volume V , pressure P ) (temperature T , entropy S)

dU = TdS − PdV , internal energy

dF = − SdT − PdV , Helmholtz free energy

dH = TdS + V dP , enthalpy

dG = − SdT + V dP , Gibbs free energy
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Quasi-local quantities: quasi-local expressions

◮ In general (in particular for gravity) it is necessary (in order
to guarantee functional differentiability of the Hamiltonian
on the phase space with the desired boundary conditions)
to adjust the boundary term B(N) = iNϕ ∧ p which is
naturally inherited from the Lagrangian.

◮ A reference configuration, ϕ̄ and p̄, (which determine the
ground state) is essential for gravity to give the correct
value for δL = 0.

◮ With ∆ϕ := ϕ− ϕ̄, ∆p := p− p̄, we found two covariant
boundary choices (essentially Dirichlet and Neumann)

Bϕ = iNϕ ∧∆p− ς∆ϕ ∧ iN p̄, iN (δϕ ∧∆p)

Bp = iN ϕ̄ ∧∆p− ς∆ϕ ∧ iNp, −iN (∆ϕ ∧ δp)

and two other physical interesting choices

Bdyn = iN ϕ̄ ∧∆p− ς∆ϕ ∧ iN p̄, ςδϕ ∧ iN∆p− iN∆ϕ ∧ δp

Bcon = iNϕ ∧∆p− ς∆ϕ ∧ iNp, iNδϕ ∧∆p− ς∆ϕ ∧ iNδp
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Application: electromagnetism

◮ Hamiltonian

H =

∫
[

1

2
(E2 +B2)+φ~∇ · ~E

]

d3x

δH ∼
∮

φ δ( ~E · ~n)dS

essentially fix surface charge,

H =

∫
[

1

2
(E2 +B2)− ~E · ~∇φ

]

d3x

δH ∼ −
∮

δφ ( ~E · ~n)dS

fix potential.
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How much work to insert/remove a dielectric?

(i) Connect the battery. The potential on the capacitor plates is fixed.
Insert/remove the dielectric.
(ii) Connect the battery, charge up the capacitor then disconnect the battery.
Now the charge on the plates is fixed. Insert/remove the dielectric.
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Application: Einstein gravity

◮ Einstein’s (vacuum) gravity theory: first order Lagrangian

LGR = Rα
β ∧ ηα

β,

where Γα
β is the connection 1-form;

Rα
β := dΓα

β + Γα
γ ∧ Γγ

β, is the curvature 2-form and
ηαβ := ∗(ϑα ∧ ϑβ).
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Preferred Boundary Term for GR

Chen, N, Tung (1995) [also found by Katz, Bičák & Lynden-Bel]

B(N) =
1

2κ
(∆Γα

β ∧ iNηα
β + D̄βN

α∆ηα
β) η

αβ... := ∗(ϑα
∧ ϑ

β
∧ · · · )

fix the orthonormal coframe ϑµ (∼ metric) on the boundary:

δH(N) ∼ diN (∆Γα
β ∧ δηα

β)

Like other choices, at spatial infinity it gives the ADM, MTW (1973),
Regge-Teitelboim (1974), Beig-Ó Murchadha (1987), Szabados (2003)
energy, momentum, angular-momentum, center-of-mass

some special virtues:
(i) at null infinity: the Bondi-Trautman energy & the Bondi energy flux
(ii) it is “covariant”
(iii) it has positive energy [on maximal slices in the SOF gauge]
(iv) for small spheres, a positive multiple of the Bel-Robinson tensor
(v) first law of thermodynamics for black holes
(vi) for spherical solutions it has the hoop property
(vii) for a certain reference the Minkowski quasi-local quantities vanish

A “good” resolution for one ambiguity
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The reference and the quasi-local quantities

◮ Note: For all other fields it is appropriate to choose
vanishing reference values as the reference ground
state—the vacuum.

◮ But for geometric gravity the standard ground state is the
non-vanishing Minkowski metric. A non-trivial reference is
essential.

◮ With standard Minkowski coordinates yi, a Killing field of
the reference has the form Nk = Nk

0 + λk
0 ly

l, with Nk
0 and

λkl
0 = λ

[kl]
0 being constants. The 2-surface integral of the

Hamiltonian boundary term then gives the value
∮

S

B(N) = −Nk
0 pk(S) +

1

2
λkl
0 Jkl(S),

i.e., not only a quasi-local energy-momentum but also a
quasi-local angular momentum/center-of-mass. The
integrals pk(S), Jkl(S) in the spatial asymptotic limit agree
with accepted expressions for these quantities.
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the reference

◮ For energy-momentum take Nµ to be a translational Killing
field of the Minkowski reference. Then the second
quasi-local term vanishes.

◮ Remark: Holonomically (with vanishing reference) the first
term is Freud’s 1939 superpotential.
Thus we are in effect making a proposal for best choice of
coordinates for the Einstein pseudotensor.

To construct a reference choose, in a neighborhood of the
desired spacelike boundary 2-surface S, 4 smooth functions
yi, i = 0, 1, 2, 3 with dy0 ∧ dy1 ∧ dy2 ∧ dy3 6= 0 and then define a
Minkowski reference by ḡ = −(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2.
equivalent to finding a diffeomorphism for a neighborhood of
the 2-surface into Minkowski space. The reference connection
is obtained from the pullback of the flat Minkowski connection.
Then with constant Nk our quasi-local expression takes the
form

B(N) = Nkxµk(Γ
α
β − xαj dy

j
β) ∧ ηµα

β .
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Isometric matching of the 2-surface

The reference metric on the dynamical space has the components

ḡµν = ḡijy
i
µy

j
ν . (1)

Consider the usual embedding restriction: isometric matching of the
2-surface S. This can be expressed quite simply in terms of quasi-spherical
foliation adapted coordinates t, r, θ, φ as

gAB = ḡAB = ḡijy
i
Ay

j
B = −y

0

Ay
0

B + δijy
i
Ay

j
B

on S, where A,B range over 2, 3 = θ, φ.

From a classic closed 2-surface into R
3 embedding theorem, we expect that

that—as long as one restricts S and y0(xµ) so that on S

g
′

AB := gAB + y
0

Ay
0

B

is convex—one has a unique embedding.

Wang & Yau used this type of embedding in their recent quasi-local work.

Note that the choice of y0 on S determines y1, y2, y3 on S.

51



Complete 4D isometric matching

• Our “new” proposal complete isometric matching on S:
[already suggested by Szabados in 2000]

10 constraints : gµν |S = ḡµν |S = ḡijy
i
µy

j
ν |S .

on 12 embedding functions on the 2-surface of constant t, r:

yi(=⇒ yiθ, y
i
φ), yit, yir

In terms of the orthonormal coframe ϑα with 6 local Lorentz
gauge d.o.f.
Lorentz transform to match the reference coframe dxα on the
2-surface.
Integrability condition: the 2-forms dϑα should vanish when
restricted to the 2-surface:

dϑα|S = 0, 4 restrictions
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The “best matched” reference geometry

◮ 12 embedding variables subject to 10 isometric conditions
◮ equivalently, 6 local Lorentz gauge subject to 4 embedding conditions
◮ To fix the remaining 2, regard the quasi-local value as a measure of the

difference between the dynamical and the reference boundary values.
The critical points are distinguished

For a given 2 surface S 2 different quantities can be considered:

m2 = −ḡijpipj and E(N,S),

for the latter there are 2 different ways to fix N .
I: Find the critical points of m2. This should determine the reference up to
Poincaré transformations.

II: Much more simply, find the critical points of E(∂T , S). (As long as m2 > 0
this is equivalent to I.) Both lead to quasi-local quantities associated with S

An alternative gives a quasi-local energy associated with an observer.
[Afterward one could extremize over the choice of N .]

Based on some physical and practical computational arguments it is
reasonable to expect a unique solution.

Recently we have applied this approach to general axisymmetric systems
and have, in particular, found some nice results for the Kerr solution.
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Bonus

The above procedure for selecting our Hamiltonian boundary
term reference frame has much wider application.

First, note that our reference selection strategy simultaneously
provides an answer for selections needed for other related
energy expressions, in particular:

◮ How to choose the coordinate system for the Freud
superpotential and Einstein pseudotensor;

◮ How to select the tetrad for the teleparallel gauge current;
◮ It gives a spinor field selection for the Witten spinor

Hamiltonian boundary term;
◮ It gives a frame and spinor selection for Tung’s Quadratic

Spinor Lagrangian formulation.
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Furthermore

◮ 4D isometric matching with critical energy value can be
applied to select the reference frame for all of the
pseudotensors.

◮ 4D isometric matching with critical energy value can be
applied to select the reference for the other GR boundary
terms corresponding to GR Hamiltonians with other
boundary conditions.

◮ Indeed 4D isometric matching with critical energy values
can be applied to all of the different boundary terms that
have been proposed for the most general metric-affine
gravity theory and all its special subcases, including the
Poincaré gauge theory and teleparallel theory.

◮ We explicitly considered Minkowski as the fixed reference,
but actually almost any geometry could serve as a
reference. Cases of special interest might be (Anti-)de
Sitter, FLRW and Schwarzschild.
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The main result

With a suitable choice of boundary condition and a technique
for finding the Minkowski space “best matched” to a given
boundary 2-surface, we have a satisfactory way of fixing the
Hamiltonian boundary term and thereby resolving the
ambiguities in determining the quasi-local energy-momentum
and angular momentum/center-of-mass of classical physical
systems.
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Achievements & current work

◮ a good Hamiltonian boundary term
◮ good quasi-local expressions
◮ at spatial infinity & future null infinity
◮ energy-momentum & angular momentum/center-of-mass:

compatible with ADM (’61), Regge & Teitelboim (’74), Beig
& O Murchadha (’85), Szabados (’03,’04)

◮ Bondi energy flux: distinguishes a unique expression
◮ small sphere distinguishes the same unique expression

◮ current work: reference choice [arXiv:1307.1510]
◮ via “best matching”, 4D isometric and extremize energy
◮ a resolution of the second traditional ambiguity
◮ application axisymmetric systems [arXiv:1307.1039]
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Is there a deeper meaning to this similarity?
I think so.

With appreciation for your attention.
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