Moduli spaces of real and quaternionc vector bundles over a real algebraic curve

Chiu-Chu Melissa Liu (Columbia University) based on joint work with Florent Schaffhauser (Universidad de Los Andes)

- 1. Real algebraic curves and Klein surfaces. Let X be an irreducible non-singular projective curve defined over \mathbb{R} . Then $M=X(\mathbb{C})$ is a compact connected Riemann surface together with an anti-holomorphic involution $\sigma:M\to M$. The pair (M,σ) is a Klein surface. Klein proved that the topological type of a Klein surface (M,σ) is classified by a triple (g,n,a), where $g\in\mathbb{Z}_{\geq 0}$ is the genus of M, $n\in\mathbb{Z}_{\geq 0}$ is the number of connected components of M^{σ} , the fixed locus of the involution σ , and $a\in\{0,1\}$ is the index of orientability: a=0 if M/σ is orientable, a=1 if M/σ is nonorientable. M/σ is a compact (orientable or nonorientable) surface (with or without boudary).
- **2.** Real and quaternionic vector bundles. Following Atiyah, a real (resp. quaternionic) holomorphic vector bundle over a Klein surface (M, σ) is a pair (\mathcal{E}, τ) with the following properties.
 - (1) There is a commutative diagram

$$\begin{array}{ccc} \mathcal{E} & \stackrel{\tau}{\longrightarrow} & \mathcal{E} \\ \downarrow & & \downarrow \\ M & \stackrel{\sigma}{\longrightarrow} & M \end{array}$$

- (2) $\mathcal{E} \to M$ is a holomorphic vector bundle,
- (3) $\tau: \mathcal{E} \to \mathcal{E}$ is anti-holomorphic,
- (4) $\tau: \mathcal{E}_x \to \mathcal{E}_{\tau(x)}$ is \mathbb{C} -antilinear for any $x \in M$,
- (5) $\tau \circ \tau = \operatorname{Id}_E \text{ (resp. } -\operatorname{Id}_E).$

Similary, one may define a real/quaternionic C^{∞} vector bundle (E, τ) over (M, σ) . The topological types of a real/quaternionic C^{∞} vector bundle determined by Biswas-Huisman-Hurtubise. Let (M, σ) be a Klein surface of type (g, n, a). When n > 0, $M^{\sigma} = \gamma_1 \cup \cdots \cup \gamma_n$ is a disjoint union of n circles.

(\mathbb{R}) The topological type of a real vecor bundle $(E, \tau_{\mathbb{R}}) \to (M, \sigma)$ is classified by $(r, d, w^{(1)}, \dots, w^{(n)})$, where $r = \operatorname{rank} E \in \mathbb{Z}_{\geq 0}$, $d = \deg E = \int_{[M]} c_1(E) \in \mathbb{Z}$, and $w^{(j)} = w_1(E^{\tau_{\mathbb{R}}}|_{\gamma_j}) \in H^1(\gamma_j, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

Constraint: $w^{(1)} + \cdots + w^{(n)} \equiv d \pmod{2}$

(\mathbb{H}) The topological type of a quaternionic vector bundle $(E, \tau_{\mathbb{H}}) \to (M, \sigma)$ is classified by (r, d)

Constraint:
$$\begin{cases} d + r(g - 1) \equiv 0 \pmod{2}, & n = 0 \\ r \equiv d \equiv 0 \pmod{2}, & n > 0 \end{cases}$$

Let (M, σ) be a Klein surface. Recall that the slope of a holomorphic vector bundle \mathcal{E} over M is $\mu(\mathcal{E}) := \frac{\deg \mathcal{E}}{\operatorname{rank} \mathcal{E}}$. A real/quaternionic holomorphic vector bundle (\mathcal{E}, τ) over (M, σ) is

- (1) stable if, for any non-trivial τ -invariant subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) < \mu(\mathcal{E})$;
- (2) semi-stable if, for any non-trivial τ -invariant subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$;

- (3) geometrically stable if, for any non-trivial subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) < \mu(\mathcal{E})$;
- (4) geometrically semi-stable if, for any non-trivial subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$.

Apparently, $(1)\Rightarrow(2)$, $(3)\Rightarrow(4)$, $(3)\Rightarrow(1)$, $(4)\Rightarrow(2)$. Schaffhauser showed that $(2)\Rightarrow(4)$, $(1)\neq(3)$ (see also Langton).

Following Schaffhauser, let (\mathcal{E}, τ) be a semi-stable real/quaternionic holomorphic vector bundle over (M, σ) . A real/quaternionic Jordan-Hölder filbration of (\mathcal{E}, τ) is a filtration $0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{E}$ by τ -invariant holomorphic subbundles, such that $\mathcal{E}_i/\mathcal{E}_{i-1}$ is stable in the real/quaternionic sense. Let $\operatorname{gr}(\mathcal{E}, \tau) := \bigoplus_{i=1}^k \mathcal{E}_i/\mathcal{E}_{i-1}$. Two semi-stabe real/quaternionic holomorphic vector bundles (\mathcal{E}, τ) and (\mathcal{E}', τ') are real/quaternionic S-equivalent if $\operatorname{gr}(\mathcal{E}, \tau) \cong \operatorname{gr}(\mathcal{E}', \tau')$ as real/quaternionic holomorphic vector bundles.

We fix a C^{∞} real/quaternionic vector bundle (E,τ) of rank r, degree d on a Klein surface (M,σ) .

- Let M_M^{r,d} be the moduli space of S-equivalence classes of semi-stable holomorphic structure on E. Atiyah-Bott computed the Poincaré polynomial P_t(M_M^{r,d}; Q) when M_M^{r,d} is smooth.
 Let M_{M,σ}^{r,d,τ} be moduli space of real/quaternionic S-equivalence classes of
- Let $\mathcal{M}_{M,\sigma}^{r,d,\tau}$ be moduli space of real/quaternionic S-equivalence classes of semi-stable τ -compactible holomoprhic structures on (E,τ) . Liu-Schaffhauser computed the Poincaré polynomial $P_t(\mathcal{M}_{M,\sigma}^{r,d,\tau}; \mathbb{Z}/2\mathbb{Z})$ when $\mathcal{M}_{M,\sigma}^{r,d,\tau}$ is smooth.

3. The Yang-Mills equations over Riemann surfaces. (Atiyah-Bott, 1982)

Let $E \to M$ be a complex vector bundle of rank r, degree d over a Riemann surface $g \geq 2$. Let \mathcal{C} be the space of (0,1)-connections (holomorphic structures) on E. There is a stratification $\mathcal{C} = \bigcup_{\mu \in I_{r,d}} \mathcal{C}_{\mu}$, where \mathcal{C}_{μ} is the space of holomorphic

on
$$E$$
. There is a stratification $C = \bigcup_{\mu \in I_{r,d}} C_{\mu}$, where C_{μ} is the space of holomorphic structures on E of Harder-Narasimhan type $\mu = (\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell})$,

where $r_i \in \mathbb{Z}_{>0}$, $d_i \in \mathbb{Z}$, $\sum_i r_i = r$, $\sum_i d_i = d$, $\frac{d_1}{r_1} > \cdots > \frac{d_\ell}{r_\ell}$. A holomorphic structure \mathcal{E} is in \mathcal{C}_{μ} if $0 \subset \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_\ell = \mathcal{E}$, where $\mathcal{E}_i/\mathcal{E}_{i-1}$ is a semi-stable holomorphic vector bundle of rank r_i , degree d_i over M. Let $\mathcal{C}_{ss} = \mathcal{C}_{(\frac{d}{r}, \dots, \frac{d}{r})}$ be the space of semi-stable holomorphic structure on E.) The gauge group $\mathcal{G}_{\mathbb{C}} = \operatorname{Aut}(E)$ acts on \mathcal{C} , \mathcal{C}_{μ} , and $\mathbb{C}^* \subset \mathcal{G}_{\mathbb{C}}$ acts trivially; $\overline{\mathcal{G}}_{\mathbb{C}} := \mathcal{G}_{\mathbb{C}}/\mathbb{C}^*$ acts on \mathcal{C} , acts freely on $\mathcal{C}_s \subset \mathcal{C}_{ss}$, where \mathcal{C}_s is stable holomorphic structures. When $r \wedge d = 1$, $\mathcal{C}_{ss} = \mathcal{C}_s$, $\mathcal{M}_M^{r,d} = \mathcal{C}_{ss}/\overline{\mathcal{G}}_{\mathbb{C}}$ is a smooth projective variety over \mathbb{C} , and

$$P_t(\mathcal{M}_M^{r,d}; \mathbb{Q}) = P_t^{\overline{\mathcal{G}}_{\mathbb{C}}}(\mathcal{C}_{ss}; \mathbb{Q}) = (1 - t^2) P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{ss}; \mathbb{Q}).$$

Atiyah-Bott obtained recursive formula for $P_g(r,d) := P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{ss};\mathbb{Q})$ for any $g \geq 2$, $r \in \mathbb{Z}_{>0}$, $d \in \mathbb{Z}$. Their method can be summarized in the following three steps.

(1) $\{C_{\mu} : \mu \in I_{r,d}\}$ is a $\mathcal{G}_{\mathbb{C}}$ -equivariant perfect stratification over \mathbb{Q}

$$P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C};\mathbb{Q}) = \sum_{\mu \in I_{r,d}} t^{2d_{\mu}} P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{\mu};\mathbb{Q}), \quad d_{\mu} = \mathrm{rank}_{\mathbb{C}} N_{\mathcal{C}_{\mu}/\mathcal{C}}.$$

Key: $e_{\mathcal{G}_{\mathbb{C}}}(N_{\mathcal{C}_{\mu}/\mathcal{C}})$ is not a zero divisor in $H^*_{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{\mu};\mathbb{Q})$.

(2) The rational Poincaré series $Q_g(r) := P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}; \mathbb{Q}) = P_t(B\mathcal{G}_{\mathbb{C}}; \mathbb{Q})$ of the classifying space $B\mathcal{G}_{\mathbb{C}}$ of the gauge group $\mathcal{G}_{\mathbb{C}}$ can be computed using certain

cohomological Leray-Hirsch spectral sequences over \mathbb{Q} . These spectral sequences collapse at the E_2 term.

(3)
$$\mu = \left(\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}}_{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell}\right) \in I_{r,d} \Rightarrow P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{\mu}; \mathbb{Q}) = \prod_{i=1}^{\ell} P_g(r_i, d_i).$$

 $(1)+(2)+(3) \Rightarrow$ Atiyah-Bott recursive formula

$$P_g(r,d) = Q_g(r) - \sum_{\mu \in I_{r,d} - \{(\frac{d}{r}, \dots, \frac{d}{r})\}} t^{2d_{\mu}} \prod_{i=1}^{\ell} P_t(r_i, d_i)$$

Zagier solved the above recursive formula and obtained a closed formula for $P_g(r, d)$ for any $g \geq 2$, $r \in \mathbb{Z}_{>0}$, $d \in \mathbb{Z}$.

4. The Yang-Mills Equations over Klein Surfaces. (Liu-Schaffhauser, 2011) Let $(E,\tau) \to (M,\sigma)$ be a real/quaternionic vector bundle of rank r, degree d over a Klein surface (M,σ) of type (g,n,a), where $g \geq 2$. τ induces involutions on \mathcal{C} , \mathcal{C}_{μ} , $\mathcal{G}_{\mathbb{C}}^{\tau}$ acts on \mathcal{C}^{τ} , \mathcal{C}_{μ}^{τ} , and $\mathbb{R}^* = (\mathbb{C}^*)^{\tau} \subset \mathcal{G}_{\mathbb{C}}^{\tau}$ acts trivially. $\overline{\mathcal{G}}_{\mathbb{C}}^{\tau} := \mathcal{G}_{\mathbb{C}}^{\tau}/\mathbb{R}^*$ acts on \mathcal{C}^{τ} , acts freely on $\mathcal{C}_{s}^{\tau} \subset \mathcal{C}_{ss}^{\tau}$, where \mathcal{C}_{s}^{τ} is geometrically stable τ -compatible holomorphic structures When $r \wedge d = 1$, $\mathcal{C}_{ss}^{\tau} = \mathcal{C}_{s}^{\tau}$, $\mathcal{M}_{M,\sigma}^{r,d,\tau} = \mathcal{C}_{ss}^{\tau}/\overline{\mathcal{G}}_{\mathbb{C}}^{\tau}$ is a smooth compact manifold, and

$$P_t(\mathcal{M}_{M,\sigma}^{r,d,\tau}; \mathbb{Z}_2) = P_t^{\overline{\mathcal{G}}_{\mathbb{C}}^{\tau}}(\mathcal{C}_{ss}^{\tau}; \mathbb{Z}_2) = (1-t)P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}_{ss}^{\tau}; \mathbb{Z}_2).$$

Liu-Schaffhauser obtained a recursive formula for $P_{(g,n,a)}^{\tau}(r,d) := P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}_{ss}^{\tau};\mathbb{Z}_2)$ for any $(g,n,a),\ r,\ d,\ \tau,\ (g\geq 2)$. Similar to Atiyah-Bott, our method can be summarized in three steps.

(1) $\{C^{\tau}_{\mu} : \mu \in I^{\tau}_{r,d}\}$ is a $\mathcal{G}^{\tau}_{\mathbb{C}}$ -equivariant perfect stratification over \mathbb{Z}_2

$$P_t^{\mathcal{G}^\tau_{\mathbb{C}}}(\mathcal{C}^\tau;\mathbb{Z}_2) = \sum_{\mu \in I^\tau_{r,d}} t^{d_\mu} P_t^{\mathcal{G}^\tau_{\mathbb{C}}}(\mathcal{C}^\tau_\mu;\mathbb{Z}_2), \quad d_\mu = \mathrm{rank}_{\mathbb{R}}(N_{\mathcal{C}^\tau_\mu/\mathcal{C}^\tau}).$$

 $N_{\mathcal{C}_{\mu}^{\tau}/\mathcal{C}^{\tau}}$ is real vector bundle which is not orientable in general Key: $e_{\mathcal{G}_{\mathbb{C}}^{\tau}}(N_{\mathcal{C}_{\mu}^{\tau}/\mathcal{C}^{\tau}})$ is not a zero divisor in $H_{\mathcal{C}_{\mathbb{C}}}^{*}(\mathcal{C}_{\mu}^{\tau};\mathbb{Z}_{2})$.

(2) The mod 2 Poincaré series $Q_{(g,n,a)}^{\tau}(r) := P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}^{\tau}; \mathbb{Z}_2) = P_t(B\mathcal{G}_{\mathbb{C}}^{\tau}; \mathbb{Z}_2)$ of the classifying space $B\mathcal{G}_{\mathbb{C}}^{\tau}$ of the real/quaternionic gauge group $\mathcal{G}_{\mathbb{C}}^{\tau}$ can be computed using certain cohomological Leray-Hirsch spectral sequences over \mathbb{Z}_2 . These spectral sequences do *not* collapse at the E_2 term in general, and we need to compute all the higher differentials.

(3)
$$\mu = \left(\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}}_{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell}; \tau_1, \dots, \tau_\ell\right) \in I_{r,d}^{\tau}$$

$$\Rightarrow P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}_{\mu}; \mathbb{Z}_2) = \prod_{i=1}^{\ell} P_{(g,n,a)}^{\tau_i}(r_i, d_i).$$

 $(1)+(2)+(3) \Rightarrow$ recursive formula

$$P_{(g,n,a)}^{\tau}(r,d) = Q_{(g,n,a)}^{\tau}(r) - \sum_{\mu \in I_{r,d}^{\tau} - \{(\frac{d}{r}, \dots, \frac{d}{r})\}} t^{d_{\mu}} \prod_{i=1}^{\ell} P_{(g,n,a)}^{\tau_{i}}(r_{i}, d_{i}).$$

Using Zagier's method, we solved the above recursive formula and obtained a closed formula $P_{(g,n,a)}^{\tau}(r,d)$ for any $(g,n,a), r, d, \tau, (g \ge 2)$.

Moduli spaces of real and quaternionc vector bundles over a real algebraic curve

Chiu-Chu Melissa Liu
Columbia University
(based on joint work with Florent Schaffhauser)

Tsinghua International Mathematics Forum Recent Progress on Moduli Spaces and Specical Varieties December 21, 2011

Real algebraic curves and Klein surfaces

Let X be an irreducible nonsingular projective curve defined over \mathbb{R} . Then $M=X(\mathbb{C})$ is a compact connected Riemann surface together with an anti-holomorphic involution $\sigma:M\to M$. The pair (M,σ) is a **Klein surface**.

The topological type of a Klein surface

Felix Klein (1893). The topological type of a Klein surface (M, σ) is classified by a triple (g, n, a), where

- ▶ $g \in \mathbb{Z}_{\geq 0}$ is the genus of M
- ▶ $n \in \mathbb{Z}_{\geq 0}$ is the number of connected components of M^{σ}
- ▶ $a \in \{0,1\}$ is the index of orientability:

$$a = egin{cases} 0 & ext{if } M/\sigma ext{ is orientable}, \ 1 & ext{if } M/\sigma ext{ is nonorientable}. \end{cases}$$

 M/σ is a compact (orientable or nonorientable) surface (with or without bouldary)

Real and quaternionic vector bundles: definitions

Atiyah (1966). A real (resp. quaternionic) holomorphic vector bundle over a Klein surface (M, σ) is a pair (\mathcal{E}, τ) with the following properties.

$$\begin{array}{ccc} \mathcal{E} & \stackrel{\tau}{\longrightarrow} & \mathcal{E} \\ \downarrow & & \downarrow \\ M & \stackrel{\sigma}{\longrightarrow} & M \end{array}$$

- 1. There is a commutative diagram
- 2. $\mathcal{E} \to M$ is a holomorphic vector bundle,
- 3. $au: \mathcal{E} \to \mathcal{E}$ is anti-holomorphic,
- 4. $\tau: \mathcal{E}_x \to \mathcal{E}_{\tau(x)}$ is \mathbb{C} -antilinear for any $x \in M$,
- 5. $\tau \circ \tau = \operatorname{Id}_{\mathcal{E}} (\operatorname{resp.} \operatorname{Id}_{\mathcal{E}}).$

Similarly, one may define a real/quaternionic \mathbf{C}^{∞} vector bundle (E, τ) over (M, σ) .

Real and quaternionic vector bundles: topological types

Let (M, σ) be a Klein surface of type (g, n, a). When n > 0, $M^{\sigma} = \gamma_1 \cup \cdots \cup \gamma_n$ disjoint union of n circles **Biswas-Huisman-Hurtubise** (2010)

(\mathbb{R}) The topological type of a real vecor bundle $(E, \tau_{\mathbb{R}}) \to (M, \sigma)$ is classified by $(r, d, w^{(1)}, \dots, w^{(n)})$, where $r = \operatorname{rank} E \in \mathbb{Z}_{\geq 0}$, $d = \deg E = \int_{[M]} c_1(\mathcal{E}) \in \mathbb{Z}$, and

$$w^{(j)} = w_1(E^{\tau_{\mathbb{R}}}|_{\gamma_j}) \in H^1(\gamma_j, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

is the first Stiefel-Whitney class of the real vector bundle $E^{\tau_{\mathbb{R}}}|_{\gamma_j}$ of rank r over the j-th boundary circle γ_j . Constraint: $w^{(1)} + \cdots + w^{(n)} \equiv d \pmod{2}$

(\mathbb{H}) The topological type of a quaternionic vector bundle $(E, \tau_{\mathbb{H}}) \to (M, \sigma)$ is classified by (r, d) Constraint: $\begin{cases} d + r(g-1) \equiv 0 \pmod{2}, & n = 0 \\ r \equiv d \equiv 0 \pmod{2}, & n > 0 \end{cases}$

Real and quaternionic vector bundles: stability conditions

Let (M,σ) be a Klein surface. The slope of a holomorphic vector bundle $\mathcal E$ over M is $\mu(\mathcal E):=\frac{\deg \mathcal E}{\mathrm{rank}\mathcal E}$. A real/quaternionic holomorphic vector bundle $(\mathcal E,\tau)$ over (M,σ) is

- (1) **stable** if, for any non-trivial τ -invariant subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) < \mu(\mathcal{E})$;
- (2) **semi-stable** if, for any non-trivial τ -invariant subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$;
- (3) **geometrically stable** if, for any non-trivial subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) < \mu(\mathcal{E})$;
- (4) **geometrically semi-stable** if, for any non-trivial subbundle $\mathcal{F} \subset \mathcal{E}$, $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$.

Apparently: $(1)\Rightarrow(2)$, $(3)\Rightarrow(4)$, $(3)\Rightarrow(1)$, $(4)\Rightarrow(2)$ **Schaffhauser (2010)**: $(2)\Rightarrow(4)$, $(1)\not\Rightarrow(3)$ (cf. Langton 1975)

Real and quaternionic vector bundles: moduli spaces

Schaffhauser (2010)

Let (\mathcal{E}, τ) be a semi-stable real/quaternionic holomorphic vector bundle over (M, σ) . A **real/quaternionic Jordan-Hölder filbration** of (\mathcal{E}, τ) is a filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{E}$$

by τ -invariant holomorphic subbundles, such that $\mathcal{E}_i/\mathcal{E}_{i-1}$ is stable in the real/quaternionic sense.

$$\operatorname{gr}(\mathcal{E}, \tau) := \bigoplus_{i=1}^k \mathcal{E}_i / \mathcal{E}_{i-1}.$$

Two semi-stabe real/quaternionic holomorphic vector bundles (\mathcal{E}, τ) and (\mathcal{E}', τ') are **real/quaternionic** *S*-equivalent if $\operatorname{gr}(\mathcal{E}, \tau) \cong \operatorname{gr}(\mathcal{E}', \tau')$ as real/quaternionic holomorphic vector bundles.

Real and quaternionic vector bundles: moduli spaces

We fix a C^{∞} real/quaternionic vector bundle (E, τ) of rank r, degree d on a Klein surface (M, σ) .

Let $\mathcal{M}_{M}^{r,d}$ be the moduli space of S-equivalence classes of semi-stable holomorphic structure on E.

Atiyah-Bott (1982) computed the Poincaré polynomial $P_t(\mathcal{M}_M^{r,d};\mathbb{Q})$ when $\mathcal{M}_M^{r,d}$ is smooth.

Let $\mathcal{M}_{M,\sigma}^{r,d,\tau}$ be moduli space of real/quaternionic S-equivalence classes of semi-stable τ -compactible holomoprhic structures on (E,τ) .

L-Schaffhauser (2011) computed the Poincaré polynomial $P_t(\mathcal{M}_{M,\sigma}^{r,d,\tau}; \mathbb{Z}/2\mathbb{Z})$ when $\mathcal{M}_{M,\sigma}^{r,d,\tau}$ is smooth.

The Yang-Mills equations over Riemann surfaces (I)

Atiyah-Bott (1982) Let $E \to M$ be a complex vector bundle of rank r, degree d over a Riemann surface $g \ge 2$. C = space of (0,1)-connections (holomorphic structures) on E

$$\mathcal{C} = \bigcup_{\mu \in I_{r,d}} \mathcal{C}_{\mu}$$

where \mathcal{C}_{μ} is the space of holomorphic structures on E of

$$\text{Harder-Narasimhan type } \mu = \Big(\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}}_{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell}\Big),$$

$$r_i \in \mathbb{Z}_{>0}, \ d_i \in \mathbb{Z}, \ \sum_i r_i = r, \ \sum_i d_i = d, \ \frac{d_1}{r_1} > \cdots > \frac{d_\ell}{r_\ell}.$$

$$0\subset\mathcal{E}_0\subset\mathcal{E}_1\subset\cdots\subset\mathcal{E}_\ell=\mathcal{E}$$

 $\mathcal{E}_i/\mathcal{E}_{i-1}$ semi-stable, rank r_i , degree d_i .

The Yang-Mills equations over Riemann surfaces (II)

$$C_{ss} = C_{(\frac{d}{t}, \dots, \frac{d}{t})} =$$
space of semi-stable holomorphic structure on E

The gauge group $\mathcal{G}_{\mathbb{C}}=\mathrm{Aut}(\mathit{E})$ acts on $\mathcal{C},\ \mathcal{C}_{\mu}.$

 $\mathbb{C}^* \subset \mathcal{G}^\mathbb{C}$ acts trivially.

 $\overline{\mathcal{G}}_\mathbb{C}=\mathcal{G}_\mathbb{C}/\mathbb{C}^*$ acts on \mathcal{C} , acts freely on $\mathcal{C}_s\subset\mathcal{C}_{ss}$

 C_s : stable holomorphic structures

$$r \wedge d = 1 \Rightarrow \mathcal{C}_{ss} = \mathcal{C}_{s}$$

 $\Rightarrow \mathcal{M}_M^{r,d} = \mathcal{C}_{ss}/\overline{\mathcal{G}}_\mathbb{C} \text{ is a smooth projective variety over } \mathbb{C}$

$$P_t(\mathcal{M}_M^{r,d};\mathbb{Q}) = P_t^{\overline{\mathcal{G}}_\mathbb{C}}(\mathcal{C}_{ss};\mathbb{Q}) = (1-t^2)P_t^{\mathcal{G}_\mathbb{C}}(\mathcal{C}_{ss};\mathbb{Q}).$$

Atiyah-Bott: recursive formula for

$$P_g(r,d):=P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{ss};\mathbb{Q}) \text{ for any } g\geq 2,\ r\in\mathbb{Z}_{>0},\ d\in\mathbb{Z}$$

The Yang-Mills equations over Riemann surfaces (III)

(1) $\{C_{\mu} : \mu \in I_{r,d}\}$ is a $\mathcal{G}_{\mathbb{C}}$ -equivariant perfect stratification over \mathbb{Q}

$$P_t^{\mathcal{G}_\mathbb{C}}(\mathcal{C};\mathbb{Q}) = \sum_{\mu \in I_{r,d}} t^{2d_\mu} P_t^{\mathcal{G}_\mathbb{C}}(\mathcal{C}_\mu;\mathbb{Q}), \quad \textit{d}_\mu = \mathrm{rank}_\mathbb{C} \textit{N}_{\mathcal{C}_\mu/\mathcal{C}}.$$

Key: $e_{\mathcal{G}_{\mathbb{C}}}(N_{\mathcal{C}_{\mu}/\mathcal{C}})$ is not a zero divisor in $H_{\mathcal{G}_{\mathbb{C}}}^*(\mathcal{C}_{\mu};\mathbb{Q})$.

(2)
$$Q_g(r) := P_t^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}; \mathbb{Q}) = P_t(B\mathcal{G}_{\mathbb{C}}; \mathbb{Q})$$

$$= \frac{\prod_{j=1} (1 + t^{2j-1})^{2g}}{\prod_{j=1}^r (1 - t^{2j}) \prod_{j=1}^{r-1} (1 - t^{2j})}$$

Method: cohomological Leray-Hirsch spectral sequence over \mathbb{Q} . It collapses at the E_2 term.

(3)
$$\mu = \left(\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}}_{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell}\right) \in I_{r,d}$$

$$P_{+}^{\mathcal{G}_{\mathbb{C}}}(\mathcal{C}_{u}; \mathbb{Q}) = \prod_{i=1}^{\ell} P_{\sigma}(r_i, d_i).$$

Recursive formula and closed formula

 $(1)+(2)+(3) \Rightarrow$ Atiyah-Bott recursive formula

$$P_g(r,d) = Q_g(r) - \sum_{\mu \in I_{r,d} - \{(\frac{d}{r}, \cdots, \frac{d}{r})\}} t^{2d_{\mu}} \prod_{i=1}^{\ell} P_t(r_i, d_i)$$

Zagier's closed formula

$$= \sum_{l=1}^{r} \sum_{\substack{r_{1}, \dots, r_{l} \in \mathbb{Z}_{>0} \\ \sum r_{i} = r}} (-1)^{l-1} \frac{t^{2(\sum_{i=1}^{l-1} (r_{i} + r_{i+1}) \langle (r_{1} + \dots + r_{i}) \frac{d}{r} \rangle + (g-1) \sum_{i < j} r_{i} r_{j})}}{\prod_{i=1}^{l-1} (1 - t^{2(r_{i} + r_{i+1})})}$$

$$\prod_{i=1}^{l} \frac{\prod_{j=1}^{r_{i}} (1 + t^{2j-1})^{2g}}{\left(\prod_{j=1}^{r_{i}-1} (1 - t^{2j})^{2}\right) (1 - t^{2r_{i}})}$$

where $\langle x \rangle = [x] + 1 - x$ denotes, for a real number x, the unique $t \in (0,1]$ with $x+t \in \mathbb{Z}$.

The Yang-Mills equations over Klein surfaces (I)

L-Schaffhauser (2011) Let $(E, \tau) \to (M, \sigma)$ be a real/quaternionic vector bundle of rank r, degree d over a Klein surface (M, σ) of type (g, n, a), where $g \ge 2$.

au induces involutions on \mathcal{C} , \mathcal{C}_{μ} , $\mathcal{G}^{\tau}_{\mathbb{C}}$. $\mathcal{G}^{\tau}_{\mathbb{C}} \text{ acts on } \mathcal{C}^{\tau}$, \mathcal{C}^{τ}_{μ} . $\mathbb{R}^{*} = (\mathbb{C}^{*})^{\tau} \subset \mathcal{G}^{\tau}_{\mathbb{C}}$ acts trivially. $\overline{\mathcal{G}^{\tau}_{\mathbb{C}}} = \mathcal{G}^{\tau}_{\mathbb{C}}/\mathbb{R}^{*} \text{ acts on } \mathcal{C}^{\tau}$, acts freely on $\mathcal{C}^{\tau}_{s} \subset \mathcal{C}^{\tau}_{ss}$ geometrically stable τ -compatible holomorphic structures

$$\begin{array}{l} r \wedge d = 1 \Rightarrow \mathcal{C}_{\mathrm{ss}}^{\tau} = \mathcal{C}_{\mathrm{s}}^{\tau} \\ \Rightarrow \mathcal{M}_{M,\sigma}^{r,d,\tau} = \mathcal{C}_{\mathrm{ss}}^{\tau}/\overline{\mathcal{G}}_{\mathbb{C}}^{\tau} \text{ is a smooth compact manifold,} \end{array}$$

$$P_t(\mathcal{M}^{r,d,\tau}_{M,\sigma};\mathbb{Z}_2) = P_t^{\overline{\mathcal{G}}^\tau_\mathbb{C}}(\mathcal{C}^\tau_{\mathsf{ss}};\mathbb{Z}_2) = (1-t)P_t^{\mathcal{G}^\tau_\mathbb{C}}(\mathcal{C}^\tau_{\mathsf{ss}};\mathbb{Z}_2).$$

L-Schaffhauser: recursive formula for

$$P_{(g,n,a)}^{\; au}(r,d):=P_t^{\mathcal{G}^{\mathcal{T}}_{\mathbb{C}}}(\mathcal{C}^{ au}_{ss};\mathbb{Z}_2) \; ext{for any} \; (g,n,a), \; r, \; d, \; au, \; (g\geq 2)$$

The Yang-Mills equations over Klein surfaces (II)

(1) $\{\mathcal{C}^{ au}_{\mu}:\mu\in I^{ au}_{r,d}\}$ is a $\mathcal{G}^{ au}_{\mathbb{C}}$ -equivariant perfect stratification over \mathbb{Z}_2

$$P_t^{\mathcal{G}^\tau_{\mathbb{C}}}(\mathcal{C}^\tau;\mathbb{Z}_2) = \sum_{\mu \in I^\tau_{r,d}} t^{d_\mu} P_t^{\mathcal{G}^\tau_{\mathbb{C}}}(\mathcal{C}^\tau_\mu;\mathbb{Z}_2), \quad d_\mu = \mathrm{rank}_{\mathbb{R}}(N_{\mathcal{C}^\tau_\mu/\mathcal{C}^\tau}).$$

 $N_{\mathcal{C}_{\mu}^{\tau}/\mathcal{C}^{\tau}}$ is real vector bundle which is not orientable in general Key: $e_{\mathcal{G}_{\mathbb{C}}^{\tau}}(N_{\mathcal{C}_{\mu}^{\tau}/\mathcal{C}^{\tau}})$ is not a zero divisor in $H_{\mathcal{G}_{\mathbb{C}}}^{*}(\mathcal{C}_{\mu}^{\tau};\mathbb{Z}_{2})$.

(2) $Q_{(g,n,a)}^{\ \tau}(r) := P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}^{\tau}; \mathbb{Z}_2) = P_t(\mathcal{B}\mathcal{G}_{\mathbb{C}}^{\tau}; \mathbb{Z}_2)$ The real case:

$$Q_{(g,n,a)}^{\ \tau_{\mathbb{R}}}(r) = \frac{\prod_{j=1}^{r} (1+t^{2j-1})^{g-n+1} \prod_{j=1}^{r-1} (1+t^{j})^{n} \prod_{j=1}^{r} (1+t^{j})^{n}}{\prod_{j=1}^{r-1} (1-t^{2j}) \prod_{j=1}^{r} (1-t^{2j})}.$$

The Yang-Mills connections over Klein surfaces (III)

The quaternionic case:

$$n=0$$

$$Q_{(g,0,1)}^{\tau_{\mathbb{H}}}(r) = \frac{\prod_{j=1}^{r} (1 + t^{2j-1})^{g+1}}{\prod_{j=1}^{r-1} (1 - t^{2j}) \prod_{j=1}^{r} (1 - t^{2j})}.$$

 $n > 0 \ (\Rightarrow r = 2r' \text{ even})$

$$Q_{(g,n,a)}^{\tau_{\mathbb{H}}}(2r') = \frac{\prod_{j=1}^{2r'} (1+t^{2j-1})^g \prod_{j=1}^{r'} (1+t^{4j-1})}{\prod_{j=1}^{2r'-1} (1-t^{2j}) \prod_{j=1}^{r'} (1-t^{4j})}.$$

Method: cohomological Leray-Hirsch spectral sequence over \mathbb{Z}_2 . It does *not* collapose at the E_2 term.

(3)
$$\mu = \left(\underbrace{\frac{d_1}{r_1}, \dots, \frac{d_1}{r_1}}_{r_1}, \dots, \underbrace{\frac{d_\ell}{r_\ell}, \dots, \frac{d_\ell}{r_\ell}}_{r_\ell}; \tau_1, \dots, \tau_\ell\right) \in I_{r,d}^{\tau}$$
$$P_t^{\mathcal{G}_{\mathbb{C}}^{\tau}}(\mathcal{C}_{\mu}; \mathbb{Q}) = \prod_{i=1}^{\ell} P_{(g,n,a)}^{\tau_i}(r_i, d_i).$$

Recursive formula and closed formula

 $(1)+(2)+(3) \Rightarrow$ recursive formula

$$P_{(g,n,a)}^{\tau}(r,d) = Q_{(g,n,a)}^{\tau}(r) - \sum_{\mu \in I_{r,d}^{\tau} - \{(\frac{d}{r},\cdots,\frac{d}{r})\}} t^{d_{\mu}} \prod_{i=1}^{\ell} P_{(g,n,a)}^{\tau_{i}}(r_{i},d_{i}).$$

Closed formula for the n = 0, real case:

$$P_{(g,0,1)}^{\tau_{\mathbb{R}}}(r,2d) = \sum_{l=1}^{r} \sum_{\substack{r_{1},...,r_{l} \in \mathbb{Z}_{>0} \\ \sum r_{i}=r}} (-1)^{l-1} \frac{t^{2(\sum_{i=1}^{l-1}(r_{i}+r_{i+1})\langle(r_{1}+\cdots+r_{i})(\frac{d}{r})\rangle)}}{\prod_{i=1}^{l-1}(1-t^{2(r_{i}+r_{i+1})})} t^{(g-1)\sum_{i < j}r_{i}r_{j}} \prod_{i=1}^{r_{i}} \frac{\prod_{j=1}^{r_{i}}(1+t^{2j-1})^{g+1}}{\prod_{j=1}^{r_{i}}(1-t^{2j})\prod_{j=1}^{r_{i}-1}(1-t^{2j})}$$

Closed formula for the n = 0, quaternionic case

$$P_{(2g'-1,0,1)}^{T_{\mathbb{H}}}(r,2d)$$

$$= \sum_{l=1}^{r} \sum_{\substack{r_{1},\dots,r_{l}\in\mathbb{Z}_{>0}\\ \sum r_{i}=r}} (-1)^{l-1} \frac{t^{2\sum_{i=1}^{l-1}(r_{i}+r_{i+1})\langle(r_{1}+\dots+r_{i})(\frac{d}{r})\rangle}}{\prod_{i=1}^{l-1}(1-t^{2(r_{i}+r_{i+1})})} t^{(2g'-2)\sum_{i< j}r_{i}r_{j}}$$

$$= \prod_{i=1}^{l} \frac{\prod_{j=1}^{r_{i}}(1+t^{2j-1})^{2g'}}{\prod_{j=1}^{r_{i}}(1-t^{2j})\prod_{j=1}^{r_{i}-1}(1-t^{2j})}$$

$$P_{(2g',0,1)}^{T_{\mathbb{H}}}(r,2d+r)$$

$$= \sum_{l=1}^{r} \sum_{\substack{r_{1},\dots,r_{l}\in\mathbb{Z}_{>0}\\ \sum r_{i}=r}} (-1)^{l-1} \frac{t^{2\sum_{i=1}^{l-1}(r_{i}+r_{i+1})\langle(r_{1}+\dots+r_{i})(\frac{d}{r})\rangle}}{\prod_{i=1}^{l-1}(1-t^{2(r_{i}+r_{i+1})})} t^{(2g'-1)\sum_{i< j}r_{i}r_{j}}$$

$$\prod_{i=1}^{l} \frac{\prod_{j=1}^{r_i} (1+t^{2j-1})^{2g'+1}}{\prod_{j=1}^{r_i} (1-t^{2j}) \prod_{j=1}^{r_i-1} (1-t^{2j})}$$

Closed formula for the n > 0, real case

$$\begin{split} &P_{(g,n,a)}^{\tau_{\mathbb{R}}}(r,d)\\ &=\sum_{l=1}^{r}\sum_{\substack{r_{1},\dots,r_{l}\in\mathbb{Z}_{>0}\\\sum r_{i}=r}} (-1)^{l-1} \frac{t^{\sum_{i=1}^{l-1}(r_{i}+r_{i+1})\langle(r_{1}+\dots+r_{i})(\frac{d}{r})\rangle}}{\prod_{i=1}^{l-1}(1-t^{r_{i}+r_{i+1}})} t^{(g-1)\sum_{i< j}r_{i}r_{j}}\\ &\cdot 2^{(n-1)(l-1)} \prod_{i=1}^{l} \frac{\prod_{j=1}^{r_{i}}(1+t^{2j-1})^{g-n+1}\left(\prod_{j=1}^{r_{i}-1}(1+t^{j})^{2n}\right)(1+t^{r_{i}})^{n}}{\prod_{j=1}^{r_{i}}(1-t^{2j})\prod_{j=1}^{r_{i}-1}(1-t^{2j})} \end{split}$$

Closed formula for the n > 0, quaternionic case

$$P_{(g,n,a)}^{\tau_{\mathbb{H}}}(2r,2d)$$

$$= \sum_{l=1}^{r} \sum_{\substack{r_{1},\dots,r_{l} \in \mathbb{Z}_{>0} \\ \sum r_{i}=r}} (-1)^{l-1} \frac{t^{4\sum_{i=1}^{l-1}(r_{i}+r_{i+1})\langle(r_{1}+\dots+r_{i})(\frac{d}{r})\rangle}}{\prod_{i=1}^{l-1}(1-t^{4(r_{i}+r_{i+1})})} t^{4(g-1)\sum_{i < j} r_{i}r_{j}}$$

$$\prod_{i=1}^{l} \frac{\prod_{j=1}^{2r_{i}}(1+t^{2j-1})^{g} \prod_{j=1}^{r_{i}}(1+t^{4j-1})}{\prod_{j=1}^{2r_{i}-1}(1-t^{2j}) \prod_{j=1}^{r_{i}}(1-t^{4j})}$$