Program
Geometric flows and singularity formations
Student No.:80
Time:Fri 16:30-17:30, Oct.19
Instructor:曹怀东 Cao Huaidong  
Place:Lecture Hall, Jin Chun Yuan West Bldg.
Starting Date:2018-10-19
Ending Date:2018-10-19

Abstract:
In this talk we shall illustrate how geometric flows can deform complicated Geometric structures into simpler ones; the basic examples are the mean curvature flow (deforming hypersurfaces) and Hamilton's Ricci flow (deforming Riemannian metrics). We shall also describe a very important feature of the flows: singularity formations.


About speaker:
Huai-Dong Cao is A. Everett Pitcher Professor of Mathematics in Lehigh University. Professor Cao received his B.A. from Tsinghua University in 1981 and his Ph.D. from Princeton University in 1986 under the supervision of Professor Shing-Tung Yau. Professor Cao's specialty is geometric analysis and he is a leading expert in the subject of Kähler–Ricci flow.



摘要:
报告人将阐释几何流如何将复杂的几何结构变简单;最基本的例子是平均曲率流(形变超曲面)和哈密顿里奇流(形变黎曼度量)。此外,报告人还将在报告中讲解关于流非常重要的特性:奇点生成。


报告人简介:
曹怀东,现任美国里海大学数学系A. Everett Pitcher讲座教授,同时担任清华大学丘成桐数学科学中心国际顾问委员会委员。他于1981年本科毕业于清华大学, 1986年获美国普林斯顿大学博士学位,师从著名数学家丘成桐教授。
曹教授主要从事的研究领域是微分几何学与非线性偏微分方程,涉及Kahler-Ricci流,数学物理等众多方面。