Program
Introduction to p-adic Hodge theory
Student No.:40
Time:Tue & Thu 13:30-15:05, Aug.7-Sep.6
Instructor:王浩然 Wang Haoran  
Place:Conference Room 3, Jin Chun Yuan West Bldg.
Starting Date:2018-8-7
Ending Date:2018-9-6

This is an introductory course on p-adic Hodge theory. The p-adic Hodge theory provides a way to classify and study p-adic Galois representations of p-adic fields. We will talk about the basics of p-divisible groups, Fontaine’s various period rings, de Rham , crystalline, semistable representations and comparison theorems.


Prerequisite: One semester course on algebraic number theory.


Reference:
[1] Berger, An introduction to the theory of p-adic representations, Geometric aspects of Dwork theory, I, https://arxiv.org/abs/math/0210184 ;
[2] Brinon and Conrad, CMI summer school notes on p-adic Hodge theory, http://math.stanford.edu/~conrad/papers/notes.pdf ;
[3] Colmez, Périodes et représentations galoisiennes, https://webusers.imj-prg.fr/~pierre.colmez/Orsay.pdf ;
[4] Fontaine and Ouyang, Theory of p-adic Galois Representations, http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf